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Abstract

Recent times havewitnessedwildfires causing harm to both ecological communities and urban-
rural regions, underscoring the necessity to comprehend wildfire triggers and assess measures
for mitigation. This research hones in on Cartagena del Chaira, delving into the interplay be-
tween meteorological conditions and land cover/use that cultivate a conducive environment
forwildfires. Meteorologically, the prevalence ofwildfires is concentrated during boreal-winter,
characterized by warm and dry air, strong winds, and negligible precipitation. Additionally,
wildfires gravitate toward river-adjacent locales housing agriculture-linked shrubs, notably in
the northern part of the zone, where a confluence of land attributes andmeteorological factors
synergize to promote fire incidents. Employing climate scenarios, we deduced that elevated
temperature and reduced humidity augment wildfire susceptibility, while wind speed and pre-
cipitation discourage their propagation across most scenarios. The trajectory toward a warmer
climate could instigate fire-friendly conditions in boreal-summer, indicating the potential for
year-round fire susceptibility. Subsequently, via Machine-Learning-driven sensitivity analysis,
we discerned that among the scrutinized socio-economic variables, GINI, low educational at-
tainment, and displacement by armed groups wield the most substantial influence on wildfire
occurrence. Ultimately, these findings converge to shape proposed wildfire mitigation strate-
gies that amalgamate existing practices with enhancements or supplementary approaches.
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1
Introduction

TheAmazon Basin holds immense significance on a global scale due to its exceptional biodiver-
sity, vital role as a carbon sink, and its contribution to climate regulation (James et al., 2023).
The Intergovernmental Panel on Climate Change (IPCC) has projected that temperatures in
Tropical Forests could potentially rise by up to 4.8°C by the end of this century (Ometto et al.,
2022), a change exacerbated by both direct and indirect drivers of deforestation influenced by
a complex interplay of factors, including land use, demographics, economics, politics, and in-
stitutions (Armenteras et al., 2019). In Colombia, approximately 40% of the land is covered
byAmazonian rainforest, spanning an area of roughly 48,3164 km² and divided into three sub-
regions with distinct relief patterns (SINCHI, 2023). The ecosystems and environment of the
ColombianAmazon encompass various biomes, with the tropical rainforest biome being dom-
inant at 64.9% (Carolsfeld et al., 2003), followed by Litobiomas at 14.5%, Helobiomas at 12%,
and Peinobiomas at 12% (SINCHI, 2023). The Peinobiomas cover an additional 3.4%, while
the Orobiomas cover 4.7% across the low, medium, and high mountain areas of the three sub-
regions (SINCHI, 2023).

The climate of the Colombian Amazon is shaped by the Intertropical Convergence Zone
(ITCZ), as pointed out by Carolsfeld et al. (2003). Within this region, the typical temperature
ranges between approximately 24°C to 29°C, accompanied by a relative humidity surpassing
85%. Sunlight exposure lasts around 4 hours per day (IDEAM, 2023). While the government
hasmonitored theAmazon area as a protective buffer to safeguard national sovereignty, as high-
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lighted byRoca et al. (2013), challenges have arisen due to the considerable geographical separa-
tion between the central governing body and the obstructivemountainous terrain, resulting in
an inadvertent neglect of the zone in terms of governance. The aforementionedmeteorological
factors play a pivotal role in comprehending the underlying forces behind forest fires, which
lead to enhanced policy-making and planning strategies. However, in isolation, they fall short
of fully elucidating the genesis of wildfires. Their interpretation necessitates a synergistic con-
sideration alongside land cover, land use, and notably, socioeconomic factors, as emphasized by
Dávalos et al. (2011). The occurrence of fires is predominantly contingent upon the intricate
interplay of these four dimensions, which is why wildfires should be studied in a framework
that includes these four dimensions.

Understanding the meteorological factors that drive forest fires is of utmost importance for
comprehending the origins, patterns, and dynamics of these catastrophic incidents. A myriad
of factors can initiate forest fires, spanning fromnatural occurrences like lightning strikes to hu-
man actions including negligence, deliberate ignition, and industrial operations. Meteorology
plays a central role in shaping the behavior, progression, and intensity of forest fires. Weather
elements like temperature, humidity, wind velocity, and atmospheric stability exert a direct in-
fluence on fire conduct, ignition potential, and the extent of fire spread (Jain et al., 2021). The
nature of the land’s covering significantly guides the course of forest fires by directly molding
the conditions and mechanics of fire propagation. Certain attributes of land covering, such as
thick vegetation, desiccated fuel loads, and proximity to human habitations, frequently exac-
erbate forest fires (Armenteras Pascual et al. 2011; Casallas et al. 2022). Regions with copious
fuel sources like fallen leaves, branches, and dense undergrowth supply ample material for fires
to ignite and rapidly extend (Kosovíc et al., 2023).

Furthermore, socioeconomic aspects, encompassing population growth and Gross Domes-
tic Product (GDP), are critical to incorporate, as they contribute to the expansion of human
settlements into fire-prone areas, leading to what is termed the wildland-urban interface. This
juncture amplifies the fire potential, as human structures intermingle with flammable vegeta-
tion. Additionally, economic incentives like timber demand, agricultural yields, and land requi-
sition for diverse purposes can drive practices that escalate fire susceptibility, including subpar
forest management and unsustainable land utilization (Gobierno-Colombia 2020; Agudelo-
Hz et al. 2023). Factors like colonization trends, drug-related influences, and the aftermath of
peace agreements also warrant consideration (Dávalos et al. 2011; Armenteras et al. 2020). All
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these facets assume significance because forest fires in the Amazon rainforest predominantly
stem from both natural and human causes, forming a multi-layered process. The emergence
and progression of uncontrollable fires disrupt the ecosystem (Armenteras et al., 2020), with
far-reaching consequences for both the ecosystem and global climate. In general, although nat-
ural forces, such as lightning strikes, can initiate fires in dense vegetation during arid periods,
the majority of Amazon forest fires are a consequence of human activities, particularly defor-
estation and the expansion of agriculture and livestock grazing (highlighting the importance of
land cover). Practices like slash-and-burn land clearance, coupled with extended droughts and
the use of fire for pasture management, intensify the susceptibility and dissemination of fires
(Morton et al., 2008).

These factors would becomemore pronounced in a climate change context, as changes in at-
mospheric conditions might create a more conducive environment for the initiation and prop-
agation of fires. This underscores the importance of comprehending the current triggers of
wildfires to establish effective policies, develop strategies, and mitigate the occurrence of fires.
Employing Machine Learning (ML) models offers a method to assess the significance of these
triggers and appraise policy effectiveness. Agudelo-Hz et al. (2023), designed three distinct
land cover scenarios to gauge potential impacts on the Amazon forest. These endeavors lay
a foundation not only for evaluating diverse scenarios that encompass socio-economic factors,
land cover characteristics, andmeteorological conditions but also for discerning the potency of
each variable in influencing the likelihood ofwildfire ignition. On the other hand, Armenteras-
Pascual et al. (2011) evaluated the incidence of spatial and temporal patterns of vegetationburn-
ing in Colombia with regional and climatic variation. The results indicated a strong climatic
and fire seasonality, as well as amarked regional difference. InAmazonia they established a high
impact of small fires in the tropical rainforest present in this transition zone and the Amazon
rainforest deserves more attention in Colombia due to its lack of attention prior to its contri-
bution to climate change.

Taking into account all the significant factors discussed earlier, our primary focus shifts to-
wards (i) identifying the specific meteorological and land cover/use conditions prevailing dur-
ing the onset of wildfires in Cartagena del Chaira which is located in the Amazon, and has
one of the largest number of fires in the region. (ii) Recognizing the pivotal role of meteo-
rology, it is imperative to assess its potential alterations in a warmer climate. This has driven
us to undertake a climate change analysis, aimed at quantifying the extent of meteorological

3



deviations projected for 2049. This endeavor aims to provide a foundational understanding
for governmental actions to mitigate fire-related risks. (iii) In tandem with the preceding anal-
ysis, we ascertain the most influential socio-economic variables (among those examined) that
contribute to the propensity for fire ignition. By grasping the intricate interplay between me-
teorology, land cover/use, socio-economic factors, and climate dynamics, we then (iv) propose
strategies that align with governmental plans. These strategies are designed either to enhance
existing plans or to be synergistically combined with already established approaches.

The general aim of this study is to design informedmitigation strategies by comprehensively
understanding the complex interplay of meteorological, climatological, and socio-economic
factors that influence wildfire dynamics in Cartagena del Chaira. This involves specific goals,
(i) identifying the precise meteorological and land cover/use conditions that prevail during the
onset of wildfires in the region. (ii) Recognizing the pivotal role of meteorology in shaping
wildfire patterns and assessing potential alterations in a warmer climate scenario projected for
the year 2049. (iii) Determining the most influential socio-economic variables, among those
examined, that contribute to the propensity for fire ignition. This will aid in understanding
the socio-economic context’s impact on wildfire occurrence and guide mitigation strategies.
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2
Theoretical Framework

This section explained the state of the art regarding drivers to forest fires on the Colombian
Amazon and encompasses a comprehensive examination of past and present debates, theoret-
ical approaches, and methodological perspectives. For this, is presents a concise overview of
its key elements, tools, and methodologies showing the work done and aspects has not been
adequately developed or explored to its fullest extent.

2.1 Amazon Basin

The Amazon Basin comprises areas of Colombia, Venezuela, Guyana, French Guyana, Suri-
name, Ecuador, Perú, Bolivia, and Brazil representing one of the most important regions on
Earth in terms of biodiversity, carbon sink, and climate regulation (James et al., 2023). The
Amazon rainforest covers approximately 6.7million square kilometers contributing about 16%
of the global photosynthetic production (Nobre et al., 2021) and containing around10%of the
world’s known species. Many of theseAmazonian species are relevant for biodiversity conserva-
tion as they are endemic: around 34%mammals and 20% of birds are only found in this region
(Nobre et al., 2021). The exceptional multiple-scale of Amazonian biodiversity (species, genes,
and ecological functions), is the result of the complex spatio-temporal evolution of ecosystems,
and natural processes coupled with environmental heterogeneity, climate, and unique biotic
interactions (Nobre et al., 2021). The distribution of diversity is uneven across the Amazon
due to differences in pedology, climate gradients, and biological and ecological interactions
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that coexist in these ecosystems, which is why studying specific parts of the Amazon and also
the Amazon as a whole is important.

This environmental heterogeneity is important to maintain the ecological balance of the
region. Amazonian vegetation act as a biotic pump, capturing water from the soil and releas-
ing it into the atmosphere through evapotranspiration processes, which means that the Ama-
zon plays a crucial role in the global climate system (Nobre et al., 2021) due to its interactions
with the hydrological cycle and also with the global radiative budget. For example, some con-
sequences of high evapotranspiration rates are: removing latent heat, decreasing drought risk,
and improving the hydrologic cycle. Moreover, amazonian vegetation plays an important role
in the carbon cycle, accounting for 16% of terrestrial productivity, in fact, between 150 and
200 billion tons of carbon are stored in its soils (le Polain deWaroux et al., 2019).

On the other hand, the Amazon include also bio-cultural diversity related to the presence of
many indigenous populations who have lived in the region for thousands of years have devel-
oped lifestyles that are based on their interaction with the rainforest, their cosmovision, heredi-
tary values and beliefs which are connected to theAmazon (Moran, 1983). In this sense, indige-
nous communities possess unique knowledge that leads to the conservation and preservation
of the ecosystem. Furthermore, they represent a movement-force against climate change. De-
spite this, the Amazon basin is under threat due to imminent deforestation. By 2019, due to
legal and illegal activities such as agriculture, logging, road building, burning, dams and min-
ing, about 14%of theAmazon’s land cover is converted by land use changes, resulting in drastic
ecosystem degradation (Albert et al. 2023, le Polain deWaroux et al. 2019).

According to the IPCC, Tropical Forests temperature could increase up to 4.8°C at the end
of this century (Ometto et al., 2022) due to and intensify by direct and indirect deforestation
drivers influenced by forces, such as land use and those related to demographic, economic, po-
litical and institutional approaches (Armenteras et al., 2019), that have complex interactions
and act at multiple scales. This drivers lead to changes in ecosystem balance (e.g. ecological dis-
turbances) that would affect species richness, approaching or exceeding the extinction value of
taxa over this period, as well as a major threat to entire communities and even entire ecoregions
of tropical forests (Ometto et al., 2022).
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2.1.1 Colombian Amazon: a geographical framework

About 40% of the Colombian territory is considered Amazonian rainforest, covering 61 mu-
nicipalities in the departments ofMeta, Guainía, Guaviare, Vaupés, Amazonas, Putumayo, Ca-
quetá, Cauca and Nariño Figure 2.1. The Colombian Amazon has an extension of 483,164
km2 with three sub-regions divided into types of relief (SINCHI, 2023). The Amazon flood-
plain has maximum altitude of 300 meters above sea level (MASL) where the great plains and
lowlands are flooded in rainy seasons due to the proximity of Amazonian rivers (i.e., Caquetá,
Inírida, Guaviare, Putumayo, and Amazon) that cross the sub-region and acts as modeling
agents of the landscape (Roca et al., 2013). On the other hand, the Andean-Amazonian pied-
mont relief is located at the confluence of the Amazon basin with the Andes mountain range
and is characterized by its slightly undulating relief with gentle slopes (Roca et al., 2013). Its
formation is mainly due to a large amount of alluvial materials coming from the interior of the
Andes that deposit sediments. Finally, the Serranías is the high jungle formed bymountainous
areas and rocky plateaus that make up the mountainous system (Roca et al., 2013).

Based on this orography, the Annual Balance on the State of the Ecosystems and Environ-
mentof theColombianAmazon identifies biomespresent in theColombianAmazon (SINCHI,
2023). The climate of the Colombian Amazon is influenced by the Intertropical Convergence
Zone (ITCZ) (Carolsfeld et al., 2003), presenting unimodal regime with a peak on May-June-
July, but the rain intensity varies depending on the geographical location (Guzman et al., 2014).
Near the Eastern Cordillera, at the Piedemonte Amazonico, the humid air parcel rises, satu-
rates and produces heavy precipitation amounts (Guzman et al., 2014). More to the south (in
Guaviare) the precipitation is less strong since the parcels are not as humid as at the South of
the Amazon, and there are no branches to lift the parcel and rise the rain saturation ratio. At
the south Amazonian the rain is significant (4,000mm year−1) since the parcels tend to be very
humid and buoyant (Hernandez-Deckers, 2022) due to the amount of evapotranspiration pro-
duced in that zone. Inmore general terms, precipitation values range between 2,500mmyear−1

in the lowlands and up to 5000 mm year−1 in the Andean foothills (Carolsfeld et al., 2003).
The evapotranspiration capacity is 1447 mm year−1 which means that precipitation exceeds
the drainage capacity resulting in a constant excess of water in the soil. The average tempera-
ture is around 24-29°C and the relative humidity is larger than 85%, and the solar brightness is
4 h day−1 (IDEAM, 2023). One difficulty that arise to categorize in detail the climatological
andmeteorological conditions of theColombianAmazon is themountain ranges that split the
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Figure 2.1: Colombian Amazon location.
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country into different zones.

Due to the fact that Colombia is not fully connected, the Amazon region has been mon-
itored by the government as a buffer zone to protect the country’s sovereignty (Roca et al.,
2013), nevertheless, the physical distance between the central state, and the mountainous ob-
stacle, have produced an unwanted abandonment of the zone in terms of governmentality. In
order to understand the socioeconomic and political processes in the Colombian Amazon, it
is important to understand the identity of the inhabitants due to their colonization processes,
the influence of drugs, and the subsequent repercussions of the peace agreement. Colonization
began in the 19th century and has continued since then from the Andes mountain range in re-
sponse to social, economic, and political problems. In the 1930s, peasants began to seek amore
stable livelihood inmarginal areas outside the agrarian frontier dominated by large landowners,
this migration accelerated in the 1950s due to political confrontations (Ramírez, 2011).

In order to formalize these settlements, the government issued Law 2 of 1959, which, for
reasons of public, economic and social interest, allows the removal of forests and promotes the
change of land use under the sustenance of forest reserve areas (InstitutoNacional de losRecur-
sos Naturales Renovables y del Ambiente, 1985). From its beginnings, the eastern Amazon re-
gion (departments of Amazonas, Vaupés and Guainía) has mainly indigenous populations. In
contrast, the westernColombianAmazon (departments of Putumayo, Caquetá andGuaviare)
has the majority of the contingent population, that is, people who arrive and leave throughout
an evolutionary cycle of commodity booms (coca, gold, rubber, among others depending on
the Amazonian area) and the portion of permanent population establishes small crops. Never-
theless, the presence of big companies in zones with the presence of guerrilla groups, extortions
and kidnappings increased the costs of entering the ColombianAmazon (Ramírez 2011, Roca
et al. 2013).

These illegal activities boomed one after the other in a context where the population of this
region began to form a cocalero social movement, understood as the identity around illicit culti-
vation of coca and its economic benefits, which according toRamírez (2011) wasmotivated by
the abandonment and stigmatization by the central Colombian state. It was becoming an area
with high drug trafficking and disputes between Armed Forces and illegal groups ”owners” of
the coca-growing areas, processing laboratories and access roads getting the control of themain
municipalities of the Western Amazon developing special socioenvironmental circumstances

9



(Roca et al., 2013). Before the Colombian peace agreement between the Colombian govern-
ment and the biggest guerrilla; by substituting the role of the State, the Fuerzas Armadas Rev-
olucionarias de Colombia-Ejercito del Pueblo (FARC-EP), an armed guerrilla organization,
was the authority in these regions, restricting mobility in and out of the area as well as the ac-
tivities in this area (Armenteras et al., 2019).

2.2 Forest fires on Colombian Amazon

Forest fires in theAmazon rainforest aremainly caused by natural and human factors as amulti-
scale process where the occurrence and spread of uncontrolled fires disrupt the ecosystems
(Armenteras et al., 2020) has significant consequences for the ecosystem and global climate.
Natural causes, such as lightning strikes, can ignite fires in dense vegetation during dry seasons.
However, themajority ofAmazon forest fires are a result of human activities, particularly defor-
estation and the expansion of agriculture and livestock grazing. The clearing of land through
slash-and-burn practices, combinedwith prolonged droughts and the use of fire tomanage pas-
tures, intensifies the risk and spread of fires (Morton et al., 2008). The consequences of these
fires are far-reaching and devastating. They lead to the loss of valuable biodiversity, destruction
of habitat for countless plant and animal species, and the release of enormous amounts of car-
bon dioxide into the atmosphere, exacerbating global climate change.

According toEva andLambin (2000)before 2000 in theColombianAmazon, the land-cover
conversion in natural savannas has no significant relationship with fire activity, nevertheless in
the areas where agriculture is expanding into the forested areas (i.e., frontier zone) where the
armed conflict was more controlled has a positive relationship (R = 0.6) with forest fires. This
suggests that land ownership and traditional practices like slash-and-burnmay be an important
factor in the type of land conversion due to the management techniques differing depending
on the types of land use (Eva and Lambin, 2000; Morton et al., 2008). Although generally low
deforestation rates in Colombia have been increasing in the first 2000’s decade, Armenteras
et al. (2009) determinate that forest fires are present in all Colombian territory especially in the
Caquetá and Putumayo piedmont (5000 hotspots) finding that 10% of them are in the pro-
tected areas, 3.3% in indigenous reserves, and 6.1% in forest reserves (Armenteras et al., 2009).
In this period, themost affected vegetation cover was grasslands, which are twice more affected
thanpastures and forests, these three being themost affected coverage (Armenteras et al., 2006).
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Figure 2.2: Forest fires in the Colombian Amazon in 2010‐2022 with 80% of confidence

In the first half of the 2010s, the forest fires have the same tendency where forest loss since
then has been concentrated along the dynamic agricultural frontiers (Figure 2.2) (Armenteras
et al., 2019) and in remote areas where settlements have not yet been established and a floating
colonist populationmoves around, creating new colonization hotspots mainly using rivers net-
works (Armenteras et al., 2013a). Nonetheless, since the Colombian peace agreement in 2016
and its implementation in 2018, the forest fire dynamic has been increasing (see details inChap-
ter 4) due to the absence of territorial control and increased accessibility to land for cultivation
and grazing by both former combatants familiar with the region, as well as newcomers waiting
to get large concentrations of land mainly in agricultural areas causing an intensification of de-
forestation (Armenteras et al., 2019; Bautista-Cespedes et al., 2021).

In addition to the coexistence of diverse land cover and land use types within a spatial con-
text, they also exhibit a temporal interdependence, creating intricate land-use/land-cover trajec-
tories, with certain trajectories specifically oriented towards agriculture and pastures (Eva and
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Lambin, 2000). For example, forest conversion to pastures occurs through widespread fire.
The forest is cut, left to dry, and burn. In the majority of cases is necessary to burn periodically
the land to maintain the pasture and avoid pioneer species. On the other hand, the conversion
of savannas to agriculture depends on the type of agriculture in the area. Mechanized agricul-
ture does not use fires in its normal cycle; however, as with small andmedium-scale agriculture,
depending on the spatial and temporal patterns, burn patterns may occur (Eva and Lambin,
2000). On the contrary, the conversion of forest to agriculture through the use of fires is done
to clear the area to facilitate the establishment of crops, especially those that use techniques
such as slash and burn. However, the use of fire after land preparation depends on the crop-
ping system and the amount of residues.

Besides the fire used in land cover/change trajectories, forest fires in the Amazon have be-
come increasingly prevalent due to the changing weather patterns. Over the past few years, the
region has experienced a rise in temperatures and a decrease in rainfall (Jain et al., 2021), cre-
ating drier andmore combustible conditions, especially on December-January-February -DJF-
(see details in Chapter 4) where the temperature are above themean and the humidity is below
the average. These climatic shifts, attributed to factors such as deforestation, global warming,
and El Niño events, have contributed to the escalation of devastating forest fires (Albert et al.,
2023). The combination of higher temperatures, reduced moisture levels, and an abundance
of dry vegetation has transformed the Amazon rainforest into a tinderbox waiting to ignite. As
fires spread rapidly across vast expanses of land (as trajectories mentioned before).

2.3 Drivers of forest fire dynamics

Identifying the drivers behind forest fires is paramount in understanding the causes, patterns,
and trends of these devastating events. Forest fires can be triggered by a multitude of factors,
ranging from natural phenomena like lightning strikes to human activities such as agricultural
expansion and industrial operations, negligence, and arson. Pinpointing the drivers behind
forest fires enables us to develop targeted prevention strategies, implement effective mitigation
measures, and enforce appropriate regulations.
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2.3.1 Meteorological Conditions

Meteorology plays a pivotal role in influencing the behavior, spread, and intensity of forest
fires. Weather conditions such as temperature, humidity, wind speed, and atmospheric stabil-
ity directly impact fire behavior and the potential for fire ignition and spread (Jain et al., 2021).
Higher temperatures, low humidity levels, and strong winds can create an environment con-
ducive to the rapid growth and spread ofwildfires. Hot and dryweather conditions canquickly
dry out vegetation, increasing its flammability and making it more susceptible to ignition. Ad-
ditionally, wind plays a crucial role in determining the direction and speed of fire spread, allow-
ing fires to move swiftly and potentially impacting larger areas. Atmospheric stability and the
presence of inversions can also affect smoke dispersal, leading to health hazards and reduced
visibility. Understanding meteorological factors is vital for fire prediction, prevention, and
management.

The relationshipbetweenprecipitation and forest fires is oneof themost knowneven though
it is complex and multifaceted. Precipitation plays a critical role in determining the fuel mois-
ture content, which directly affects the flammability of vegetation. Generally, higher levels of
precipitation can lead to increased fuel moisture, making it more difficult for fires to ignite
and spread (Abatzoglou et al., 2018). Adequate rainfall can also promote the growth of vegeta-
tion, resulting in denser and more resilient forests that are less susceptible to fire. Conversely,
prolonged periods of drought and insufficient precipitation create dry and highly combustible
conditions, increasing the likelihood and intensity of forest fires. These dry spells can desic-
cate vegetation, creating abundant fuel sources for fires to rapidly propagate (Sombroek, 2001).
However, it is essential to note that the relationship between precipitation and forest fires is not
solely dependent on the amount of rainfall. The timing, duration, and distribution of precipi-
tation throughout the year also play crucial roles in shaping fire regimes (Espinoza Villar et al.
2001; Abatzoglou et al. 2018).

Temperature also plays a significant role due to higher temperatures can create dry condi-
tions, leading to increased evaporation and reduced moisture content in vegetation. This dry-
ness raises the flammability of the forest ecosystem, making it more susceptible to fire ignition
and rapid spread. As temperatures rise, the drying effect intensifies, creating a vicious cycle
that further exacerbates fire risk (Jain et al., 2021). Extreme heatwaves and prolonged periods
of high temperatures can desiccate vegetation, turning it into ready fuel for wildfires. Addi-
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tionally, elevated temperatures can enhance the intensity of fires, making them more difficult
to control and extinguish. Higher temperatures also contribute to increased evaporation rates,
leading to decreased soil moisture and reduced water availability for firefighting efforts (Abat-
zoglou et al., 2018). As climate change continues to drive global temperature increases, the
relationship between temperature and forest fires becomes even more critical.

On the other hand, humidity, the measure of moisture content in the air, is a crucial factor
in the behavior and spread of forest fires. High humidity levels indicate a greater amount of
moisture in the atmosphere, which helps to keep vegetation and fuels damp, reducing their
flammability. In such conditions, the likelihood of fire ignition decreases, and the rate of fire
spread slows down (Jain et al., 2021). Adequate humidity can also limit the availability of oxy-
gen necessary for fire combustion. On the other hand, low humidity levels contribute to drier
conditions, making the forest ecosystem more prone to fires. When humidity is low, vegeta-
tion and fuels become dry, increasing their susceptibility to ignition and facilitating the rapid
spread of fires. Dry air also accelerates the evaporation of moisture from vegetation, further
increasing their flammability.

2.3.2 Land Cover Conditions

Land cover plays a crucial role in driving forest fires, as it directly influences the conditions and
dynamics of fire propagation. Forest fires are often exacerbated by certain land cover character-
istics, such as dense vegetation, dry fuel loads, and proximity to human settlements. Forested
areas with an abundance of fuel, such as dead leaves, fallen branches, and dense undergrowth,
provide ample material for fires to ignite and spread rapidly. Additionally, areas with a high
proportion of flammable tree species or vegetation types prone to drought and desiccation, like
grasslands or shrublands, increase the likelihood and intensity of fires (Armenteras et al., 2013a).
Human activities, including land fragmentation, and land-use change, can also contribute to
the expansion of fire-prone land cover. These changes can disrupt natural fire regimes and lead
to the accumulation of combustiblematerials, further fueling the risk of forest fires. Therefore,
understanding andmanaging land cover patterns and their interactions with fire regimes are es-
sential for effective fire prevention and mitigation strategies.

Vegetation susceptibility is a key factor in determining the vulnerability of an ecosystem
to forest fires. Different types of vegetation exhibit varying levels of susceptibility based on
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their composition, structure, and adaptability to fire (Eva and Lambin, 2000). Some vegeta-
tion species have evolved to withstand and even benefit from periodic fires, while others are
highly susceptible to ignition and rapid spread. Certain characteristics make vegetation more
prone to fire. For instance, dry and dead vegetation, such as fallen leaves, dry grasses, and dead
branches, can serve as readily available fuel sources. Additionally, vegetation with high resin
or oil content, such as certain coniferous trees, can ignite easily and release highly combustible
gases. On the other hand, moist vegetation, such as certain grasses and deciduous trees, tends
to be less susceptible to ignition (Casallas et al., 2022). Moreover, the spatial arrangement and
density of vegetation also influence susceptibility. Dense vegetation can create a continuous
fuel ladder, allowing fires to climb from the ground to the forest canopy. Understanding the
susceptibility of different vegetation types to fire is crucial for fire management and prevention
efforts, including prescribed burning, fuel management, and the development of fire-resistant
landscapes.

ArmenterasPascual et al. (2011) state that in theColombianAmazon rainforest, fire-sensitive
ecosystems prevail, defined as those ecosystems that donot have anynatural fire intervention, in
this sense they are not adapted to resist burning. Consequently, fires in these ecosystems cause
enormous disturbances in the natural cycles that affect the flora and fauna. In spite of this, the
predominant type of fuel in the Amazon rainforest (e.g., trees, shrubs) has a duration of up to
100 hours (Casallas et al., 2022) producing a rapid ignition due to the interstitial moisture of
the tissues and the high leaf area (Armenteras Pascual et al., 2011). Apart from the Amazon
forest vegetation susceptibility itself, land use transitions have been construed as constituting
about a dozen processes, in the tropical zones themain processes are; Urbanization, conversion
of forest/grassland to croplands, change of crops on existing cropland, incorporation of tress
into cropland, conversion of cropland to forest/pasture, conversion of forest to pastures, incor-
poration of livestock into cropland, and, finally conversion of pastures to cropland (Figure 2.3).
Transitions in land use are the result of a set of connected changes, which reinforce each but
take place in several different components of the system creating multiple and reversible dy-
namics (Geist et al., 2006).

Some transformations in landusewith high persistence of rainforest in theColombianAma-
zon (99% of the cases) have transition matrices associated with forest fires (Armenteras et al.,
2013b). The first significant transition, from forest to secondary vegetation is higher in fire
mosaics than in the pasture mosaics, bedsides the transition from pastures to forest is higher
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Figure 2.3: Potential transitions between two land‐use/cover states. Adaptated from Geist et al. (2006)

.

16



in the forest mosaic than in illicit crops mosaics. The transition from illegal crops to forest is
significantly higher values for the forest mosaic than for the fire and especially the illicit crop
mosaic (Armenteras et al., 2013b). Additionally, the pattern of fragmentation follows the col-
onization and development associated with the rivers (Armenteras et al., 2006) in majority of
the cases, which could have a strong influence on fire development.

2.3.3 Socioeconomic conditions

Forest fires are influenced by amultitude of socioeconomic factors, such as population growth
andGrossDomestic Product (GDP),which contribute to the expansion of human settlements
into fire-prone regions, leading to the so-called wildland-urban interface (Casallas et al., 2022).
This interface amplifies the potential for forest fires as human infrastructure intertwines with
flammable vegetation. Additionally, economic factors, including demand for timber, agricul-
tural products, and land for various purposes, can incentivize practices that heighten fire vul-
nerability, such as inadequate forest management and unsustainable land-use practices. More-
over, socioeconomic disparities can exacerbate fire risks, as marginalized communities may face
challenges in accessing resources, education, and adequate firefighting infrastructure, leaving
themmore vulnerable to the impacts of forest fires.

In Colombia in the past years are being some efforts to try to establish the importance of
socioeconomic variables in the ColombianAmazon deforestation. Armenteras et al. (2006) in-
clude some socioeconomic variables finding that the quality of life indicator and violence level
has no significant relation with ecosystem degradation, however rural population density was
the most significant determinant of ecosystem degradation. some scenarios of natural ecosys-
tem degradation under three different projections of rural population density suggest that in
2040 between 85 and 100% of natural ecosystems will be lost (Armenteras et al., 2006). Other
Socioeconomic variables are included in Armenteras et al. (2013a) where apart to contemplate
urban and rural populations in deforestation analysis included unsatisfied basic needs, never-
theless, the latest in the general linear model made for deforestation at the national level has no
significance, but the rural population as mentioned by Armenteras et al. (2006) has a positive
relationship with the deforestation.

In addition to the variablesmentioned above,Gomez et al. (2014) included the displacement
to predict the influence of coca cultivation in forest fires in the Colombian Amazon. Three
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models where developed (Linear Probability Model, Logit and Probit) finding that displace-
ment variable could be used by indicator of future coca increment in forest areas and, therefore,
of the increase of fires to open areas for coca cultivation. The socioeconomic variables distance
to the nearest navigable waterway and primary or secondary road were contemplated in Dá-
valos et al. (2011) finding a negative correlation between these two with the coca expansion
indicating that coca does not expand in areas with high interconnectivity and tends to press
the agricultural frontier leading to deforestation.

2.4 Climate Change Conditions

Climate change is a phenomenon generated by the increase of Greenhouse Gas (GHGs) emis-
sions, these gases produce a radiative imbalance and thus generate a change in surface temper-
ature, which modifies the energy balance and it can generate important impacts on climate
extremes, e.g., heavy rains, floods and heat waves (IPCC, 2018). The Intergovernmental Panel
on Climate Change (IPCC) defines climate change as a statistically significant variation in the
mean state of the climate or its variability that persists for an extended period (Stocker et al.,
2013). Thus, climate change is due to internal natural processes, external forcing changes, or
anthropogenic changes in the composition of the atmosphere or land use. According to the
United Nations Framework Convention on Climate Change (UNFCCC), Article 1 defines
climate change as a change of climate that is attributed directly or indirectly to human activity
that alters the composition of the global atmosphere and which is in addition to natural climate
variability observed over comparable time periods (UN, 1992). TheUNFCCCdistinguishes be-
tween climate change attributed to human activities that alter atmospheric composition and
”climate variability” attributed to natural causes (Stocker et al., 2013; IPCC, 2018).

Not all gases in the atmosphere have the property of functioning as greenhouse gases, the
main ones being water vapor (H2Og), methane (CH4), and carbon dioxide (CO2) which are
capable of absorbing large amounts of radiation and re-emitting it to the surface. Arrhenius
and Holden (1897) and Manabe and Wetherald (1980) laid the foundation for understand-
ing the importance of these gases and the role of humans in them. It is clear from this work
that although CO2 acts naturally and helps to maintain the planet at temperatures suitable for
life. However, the accelerated growth of this gas, produced by humans, since the industrial rev-
olution has considerably increased CO2 concentrations. This growth in anthropogenic CO2
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emissions is so rapid that concentrations have increased sixfold since 1950 (Maslin, 2014).

Themechanism bywhich the surface heats up is associatedwith radiative forcing, given that
under conditions without excess GHGs, two-thirds of the radiation reaching the atmosphere
is absorbed by the oceans and the earth’s surface in the form of shortwave radiation (Maslin,
2014). While the remainder may be returned to space in the form of long-wave (infrared) ra-
diation emitted by the surface and clouds or absorbed by GHGs, which have the ability to (i)
absorb the radiation, increase its temperature and return it to the surface, or (ii) reflect it di-
rectly back to the surface (Holton, 2004). When there is an excess of GHGs, radiative forcing
increases, causing a greater amount of energy to be ”trapped” in the earth and thus producing
an increase in its temperature, causing a change in meteorological and climatic dynamics and
all the phenomena and cycles associated with them.

This may lead to the intensification of extreme weather events such as cyclones, variations
in precipitation and temperature, forest fires, natural disasters, coral bleaching, ocean acidifica-
tion, loss of biodiversity (Maslin, 2014). Also tomelting of polar ice caps, snow-cappedmoun-
tains, permafrost ecosystems, food security, access to food and livelihood resources, where
the most vulnerable populations such as indigenous communities, raizal, afro-descendants,
women and poor people, will suffer with greater intensity the impacts (IPCC, 2018). Some
efforts are being done with model ensemble to make projections of future meteorological con-
ditions in the Amazon basin. Duffy et al. (2015) found that the western Amazon (location of
theColombianAmazon)will have apositive trendofprecipitation, instead the easternAmazon
has the opposite trend. In this sense, seasonality projections indicate that the wettest months
may become slightly wetter, and the driest months get drier. and the transition months will
experiences strong drying trends.

2.4.1 Models for spatio-temporal analyses

In order to understand past, present, and future climate changes resulting from natural, un-
forced or in response to changes in radiative forcing, the Coupled Modeling Working Group
(CMWG) created the CoupledModel Intercomparison Project (CMIP) as part of the Climate
ModelDiagnostics and IntercomparisonProgram (PCMDI) (IPCC, 2018). The newCMIP is
CMIP Phase 6 (CMIP6), which has significant advances in a broader and more uneven range
of climate sensitivity values contained in a large set of models run under different scenarios
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(Colón-González et al., 2021) that could help understandwhat drives climate change, how and
why it changed in the past, andwhat the climatemay look like in the future for policymakers to
make decisions around emissions mitigation and adaptation plans (IPCC, 2018). The results
of the CMIP6 model ensemble are used by national and international climate organizations,
including the IPCC due to its high rate of confidence and success. One of the most important
features of the ensemble is associated with the different scales, variables, initial conditions, and
parametrizations between models.

CANESM5-CANOEis an acronymthat represents the specific configurationof theCanESM5
model used in CMIP6 project. CanESM5 (Canadian Earth SystemModel version 5) is devel-
oped by the Canadian Centre for Climate Modelling and Analysis (CCCma). It is a compre-
hensive Earth system model that simulates various components of the Earth’s climate system,
including the atmosphere, ocean, land surface, and sea ice (Christian et al., 2022). The ”CA-
NOE” component within CANESM5 stands for the CanadianOcean-Sea IceModel. It repre-
sents the specific ocean and sea ice model used in the CanESM5 configuration (Christian et al.,
2022). Overall, the CANESM5-CANOEmodel is a sophisticated climate model that aims to
simulate and project future climate conditions by incorporating various components of the
Earth’s system, including the atmosphere, ocean, land, and sea ice forecasting different vari-
ables in the surface. As one of the participating models in CMIP6 contributes to the broader
understanding of climate change and its impacts (Christian et al., 2022).

Another model that forecast variables in surface is CNRM-ESM2-1 stands for Centre Na-
tional de Recherches Météorologiques Earth SystemModel version 2.1. It is developed by the
Centre National de Recherches Météorologiques (CNRM) in France (Voldoire et al., 2019).
The model combines various components of the Earth’s system, including the atmosphere,
ocean, land surface, and sea ice, to simulate the interactions and dynamics that govern the
Earth’s climate system (Voldoire et al., 2019). This model incorporates advanced physical pa-
rameterizations, numerical techniques, and data assimilation methods to represent the pro-
cesses and feedbacks within the climate system. It aims to simulate the past, present, and future
climate conditions and provide insights into the response of the Earth’s climate to changes in
greenhouse gas concentrations, aerosols, and other external forcings (Voldoire et al., 2019).

By participating in CMIP6, the CNRM-ESM2-1model contributes to the collective efforts
of the climate science community to better understand climate change and its impacts. The
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model’s simulations and projections can be used to study a wide range of climate-related phe-
nomena, including temperature patterns, precipitation changes, sea level rise, and the behavior
of large-scale climatemodes like ElNiño-SouthernOscillation (ENSO) and theAtlanticMerid-
ional Overturning Circulation (AMOC).

IPSL-CMGA-LR is a climate model and the three one that predict variables on surface, it
stands for Institut Pierre-Simon Laplace Climate Model, Global Atmosphere version - Low
Resolution. It is developed by the Institut Pierre-Simon Laplace (IPSL) in France (Bonnet
et al., 2021). The model combines different components of the Earth system, including the at-
mosphere, ocean, land surface, and sea ice, to simulate the interactions and processes that drive
the Earth’s climate system (Bonnet et al., 2021). The model incorporates advanced physical
parameterizations, numerical techniques, and data assimilation methods to represent the com-
plex behavior of the climate system. It aims to simulate the past, present, and future climate
conditions and provide insights into the response of the Earth’s climate to various factors such
as greenhouse gas concentrations, aerosols, and other external forcings (Bonnet et al., 2021).
By participating in CMIP6, the IPSL-CMGA-LR model contributes to the collective efforts
of the scientific community to better understand climate change and its impacts. The model’s
simulations and projections can be used to study a wide range of climate-related phenomena,
including temperature patterns, precipitation changes, sea level rise, and the behavior of large-
scale climatemodes such asElNiño-SouthernOscillation (ENSO) and theAtlanticMeridional
Overturning Circulation (AMOC).

For this reason, for this research, an ensemble was used that included the models that have
all the variables studied at the surface. Those models provided on the CMIP6 results have pro-
vided valuable insights into the potential impacts of climate change on the Amazon rainforest,
which is a crucial ecosystem of global significance. CMIP6 projections indicate that the Ama-
zon region is expected to experience significant warming under different emission scenarios.
Higher temperatures can have detrimental effects on the rainforest, leading to increased stress
on plant and animal species, changes in ecosystemdynamics, and increased risks ofwildfires. In
this sense, CMIP6 simulations suggest that the Amazon regionmay experience changes in pre-
cipitation patterns, including shifts in the timing, intensity, and distribution of rainfall. These
changes can have profound impacts on the hydrological cycle, water availability, and ecosystem
functioning within the rainforest.

21



2.4.2 Climate Scenarios for trends and trajectories

SSP1-RCP2.6

The Shared Socioeconomic Pathway (SSP) 1- Representative Concentration Pathways (RCP)
2.6 (SSP1-RCP2.6) is one of the scenarios used in theCoupledModel IntercomparisonProject
Phase 6 (CMIP6) to explore future socioeconomic and climate conditions. SSPs are narrative
representations of plausible future socioeconomic developments and their associated green-
house gas emissions. SSP1-RCP2.6 represents a world where strong climate mitigation efforts
are implemented, resulting in low greenhouse gas emissions. Here are some key characteristics
and features of the SSP1-RCP2.6 scenario:

• Mitigation Efforts: SSP1-RCP2.6 assumes that ambitious and effective climate mitiga-
tion policies and measures are implemented globally. These efforts lead to significant re-
ductions in greenhouse gas emissions, including carbondioxide (CO2),methane (CH4),
and other greenhouse gases.

• Radiative Forcing: The SSP1-RCP2.6 scenario aims to achieve a radiative forcing level
of 2.6 Watts per square meter (W/m2) by the year 2100. Radiative forcing is a measure
of the imbalance between incoming and outgoing energy in the Earth’s atmosphere and
is closely related to global temperature change.

• Socioeconomic Development: SSP1-RCP2.6 assumes a future characterized by sustain-
able development, with a focus on environmental conservation, energy efficiency, and
renewable energy sources. It includesmeasures to promote social equity, reduce poverty,
and enhance global cooperation on climate change mitigation.

• Energy Sources: In SSP1-RCP2.6, the energy system undergoes a substantial transfor-
mation, with a shift towards low-carbon and renewable energy sources. Fossil fuel con-
sumption and greenhouse gas emissions decline significantly compared to baseline sce-
narios.

• Population andLandUse: SSP1-RCP2.6 assumes amoderate global population growth
rate and a balanced distribution of urban and rural populations. It also considers sus-
tainable land-use practices, including reforestation and afforestation efforts, to mitigate
greenhouse gas emissions and enhance carbon sequestration.

Overall, the SSP1-RCP2.6 scenario represents a future world where strong climate mitiga-
tionmeasures are implemented, leading to low greenhouse gas emissions and a focus on sustain-
able development. It is one of several scenarios used in CMIP6 to explore different pathways
and their implications for future climate change and associated impacts.
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SSP2-RCP4.5

The Shared Socioeconomic Pathway (SSP) 2- Representative Concentration Pathways (RCP)
4.5 (SSP2-RCP4.5) is one of the scenarios used in theCoupledModel IntercomparisonProject
Phase 6 (CMIP6) to explore future socioeconomic and climate conditions. SSPs are narrative
representations of plausible future socioeconomic developments and their associated green-
house gas emissions. SSP2-RCP4.5 represents a world where moderate efforts are made to
reduce greenhouse gas emissions. Here are some key characteristics and features of the Repre-
sentative Concentration Pathways scenario:

• Moderate Mitigation Efforts: SSP2-RCP4.5 assumes that moderate climate mitigation
policies and measures are implemented globally. These efforts result in some reduction
in greenhouse gas emissions, although they are not as ambitious as those in more strin-
gent scenarios.

• Radiative Forcing: The SSP2-RCP4.5 scenario aims to achieve a radiative forcing level
of 4.5 Watts per square meter (W/m2) by the year 2100. Radiative forcing is a measure
of the imbalance between incoming and outgoing energy in the Earth’s atmosphere and
is closely related to global temperature change.

• Socioeconomic Development: SSP2-RCP4.5 assumes a future characterized by a mix
of economic development pathways. It includes a range of societal, technological, and
economic factors that lead to amoderate increase in greenhouse gas emissions compared
to more stringent scenarios.

• Energy Sources: In SSP2-RCP4.5, the energy system sees a combination of fossil fuel
use and a gradual increase in the deployment of renewable energy sources. While efforts
are made to reduce emissions, fossil fuels continue to play a significant role in the energy
mix, albeit with some level of decarbonization.

• Population andLandUse: SSP2-RCP4.5 assumes amoderate global population growth
rate and a mix of urban and rural population distribution. Land use practices may vary,
with some regions undergoing deforestation or land conversion, while others prioritize
sustainable land management and conservation efforts.

Overall, the SSP2-RCP4.5 scenario represents a future world where moderate climate miti-
gation efforts are made, resulting in some reduction in greenhouse gas emissions compared to
business-as-usual scenarios. However, the level of emissions reductions is not as ambitious as
in more stringent scenarios. It is one of several scenarios used in CMIP6 to explore different
pathways and their implications for future climate change and associated impacts.
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SSP3-RCP7.0

The Shared Socioeconomic Pathway (SSP) 3- Representative Concentration Pathways (RCP)
7.0 (SSP3-RCP7.0) is one of the scenarios used in theCoupledModel IntercomparisonProject
Phase 6 (CMIP6) to explore future socioeconomic and climate conditions. SSPs are narrative
representations of plausible future socioeconomic developments and their associated green-
house gas emissions. SSP3-RCP7.0 represents a world with high greenhouse gas emissions and
limited climate mitigation efforts.
Here are some key characteristics and features of the SSP3-RCP7.0 scenario:

• LimitedMitigation Efforts: SSP3-RCP7.0 assumes that limited climate mitigation poli-
cies and measures are implemented globally. These efforts result in higher greenhouse
gas emissions compared to more ambitious scenarios, reflecting a continuation of cur-
rent trends and practices.

• Radiative Forcing: The SSP3-RCP7.0 scenario aims to achieve a radiative forcing level
of 7.0 Watts per square meter (W/m2) by the year 2100. Radiative forcing is a measure
of the imbalance between incoming and outgoing energy in the Earth’s atmosphere and
is closely related to global temperature change.

• Socioeconomic Development: SSP3-RCP7.0 assumes a future characterized by a frag-
mented global society with slow economic growth and limited international coopera-
tion. It reflects a world where challenges such as poverty reduction, social equity, and
economic development take precedence over aggressive climate mitigation efforts.

• Energy Sources: In SSP3-RCP7.0, the energy system relies heavily on fossil fuels, leading
to substantial greenhouse gas emissions. Renewable energy deployment is limited, and
there is a continued reliance on traditional energy sources such as coal, oil, and natural
gas.

• Population and LandUse: SSP3-RCP7.0 assumes a high global population growth rate
and rapid urbanization. Land use practices may vary, with some regions experiencing
deforestation and land conversion for agriculture or other purposes, leading to increased
greenhouse gas emissions from land-use change.

Overall, the SSP3-RCP7.0 scenario represents a future world with limited climate mitiga-
tion efforts, resulting in high greenhouse gas emissions and a continuation of current socioeco-
nomic trends. It is one of several scenarios used in CMIP6 to explore different pathways and
their implications for future climate change and associated impacts.
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SSP5-RCP8.5

The Shared Socioeconomic Pathway (SSP) 5- Representative Concentration Pathways (RCP)
8.5 (SSP5-RCP8.5) is one of the scenarios used in theCoupledModel IntercomparisonProject
Phase 6 (CMIP6) to explore future socioeconomic and climate conditions. SSPs are narrative
representations of plausible future socioeconomic developments and their associated green-
house gas emissions. SSP5-RCP8.5 represents a world with high greenhouse gas emissions and
limited climate mitigation efforts.
Here are some key characteristics and features of the SSP5-RCP8.5 scenario:

• LimitedMitigation Efforts: SSP5-RCP8.5 assumes that limited climate mitigation poli-
cies and measures are implemented globally. These efforts result in high greenhouse gas
emissions, reflecting a continuation of current trends and practices without significant
efforts to reduce emissions.

• Radiative Forcing: The SSP5-RCP8.5 scenario aims to achieve a radiative forcing level
of 8.5 Watts per square meter (W/m2) by the year 2100. Radiative forcing is a measure
of the imbalance between incoming and outgoing energy in the Earth’s atmosphere and
is closely related to global temperature change.

• Socioeconomic Development: SSP5-RCP8.5 assumes a future characterized by strong
economic growth, rapid population growth, and high energy demand. It represents a
world where challenges such as poverty reduction, economic development, and lifestyle
aspirations take precedence over aggressive climate mitigation efforts.

• Energy Sources: In SSP5-RCP8.5, the energy system heavily relies on fossil fuels, includ-
ing coal, oil, andnatural gas, leading to substantial greenhouse gas emissions. Renewable
energy deployment is limited, and there is a continued dependence on conventional en-
ergy sources without significant decarbonization.

• Population and LandUse: SSP5-RCP8.5 assumes a high global population growth rate
and continued urbanization. Land use practices may vary, with increased agricultural
expansion, deforestation, and land-use change, contributing to higher greenhouse gas
emissions.

Overall, the SSP5-RCP8.5 scenario represents a future world with limited climate mitiga-
tion efforts, resulting in high greenhouse gas emissions and a continuation of current socioeco-
nomic trends. It is one of several scenarios used in CMIP6 to explore different pathways and
their implications for future climate change and associated impacts.
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2.5 Machine LearningModel Description

Machine learning revolutionizes artificial intelligence, enabling computers to learn from data
and enhance performance. It transforms industries, from healthcare to entertainment, by rec-
ognizing patterns, making decisions, and predicting outcomes. Through algorithms and data-
driven adaptation, machines automate tasks, uncover insights, and elevate capabilities, driv-
ing modern technology forward. Here we use Artificial Neural Networks (ANN) represent
interconnected neural units that collectively learn from input data, optimizing their output
(O’Shea and Nash, 2015), with Long-Short Term Memory and Convolutional layers. These
neural units, akin to neurons in the human brain, compute when stimulus reaches a threshold.
They combine input data with weighted coefficients to amplify or dampen the input (Khalil
et al., 2019). The ANN architecture, encompasses input, hidden, and output layers. Activa-
tion functions introduce nonlinearity, preventing divergence (Wang, 2003). Wu et al. (2020)
outline neural networks’ key attributes: non-linearity, enhancing performance and fault toler-
ance; scalability, determined by interconnections; adaptability, self-learning and organization;
dynamic, guided by state functions. Beyond pattern recognition, neural networks find utility
in signal processing and optimization.

2.5.1 Convolutional

To streamline ANN complexity, Convolutional Neural Networks (CNNs) are employed, ad-
dressing intricate tasks beyond traditional ANNs’ scope (Albawi et al., 2017). As Goodfellow
et al. (2016) explain, CNN applies convolution—a mathematical operation—to real-valued
functions with two arguments: input and kernel. The output, termed a feature map, can
emerge fromflipped-kernel convolution (commutative) ornon-flipped (cross-correlation). CNNs
combine convolution with other functions, enabling the algorithm to adapt kernel values, in-
cluding flipping.

Discrete convolutionmirrors matrix multiplication. In discrete univariate 1-D convolution,
each row sequentially replicates the previous row, shifted by one element. 1-D CNNs suit
cases with limited training data and cost-effective real-time implementation. They offer man-
ageable training and low computational complexity while upholding performance (Kiranyaz
et al., 2021). For 2-D scenarios, analogous to double-block multiplication, the matrix corre-
sponds to 2-DCNN. Primarily used in image classification or spatially linked data, 2-DCNNs

26



entail higher computational complexity during training, necessitate substantial datasets (Ki-
ranyaz et al., 2021).

2.5.2 RecurrentNeural Networks - Long-Short TermMemory

The Recurrent Neural Network (RNN) employs looped networks to retain information for
subsequent iterations. However, this can lead to substantial long-term learning delays (Kumar
et al., 2018). Overcoming this, the Long Short-Term Memory (LSTM), a variant of RNN,
mitigates such limitations by integrating multiple intermediate steps, curbing computational
overhead. Detailed by Sundermeyer et al. (2012), this involves applying an activation function
to ’a’ followed by multiplication with factor ’b’ and other adjustments.

LSTM’smemory cell architecture enables prolonged information storage. The formulation
employs the sigmoid function to establish three gates within the memory cell (Shewalkar et al.,
2019). To simplify, a standard neural network unit ’i’ encompasses activation input ’ai’ and
output activation ’bi’, interconnected through a hyperbolic tangent (tanh) activation function
Sundermeyer et al. (2012).

2.5.3 Dense Neural Network

ADenseNeuralNetwork, also knownas aFullyConnectedNeuralNetwork, features intercon-
nected nodes between adjacent layers. Unlike specialized architectures like CNNs or RNNs
tailored for tasks like image recognition or sequence processing (Casallas et al., 2022), dense
connections characterize this network. Information flows from the input through hidden lay-
ers to the output, with associatedweights determining connection strength (Sundermeyer et al.,
2012). Non-linear transformations via activation functions shape data as it traverses these lay-
ers, facilitating intricate pattern learning (Sundermeyer et al., 2012).

Neurons in a layer receive inputs from all prior-layer neurons and employ activation func-
tions, like sigmoid, hyperbolic tangent (tanh), or rectified linear unit (ReLU). Dense neural
networks serve diverse machine learning tasks, including classification, regression, and feature
extraction. However, excessive parameters with increasing connections can lead to computa-
tional burden and overfitting if not properly regularized. In essence, a dense neural network
forms a foundational architecture, fully connecting neurons across layers to capture complex
data relationships and patterns (Sundermeyer et al., 2012; Shewalkar et al., 2019).
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3
Data andMethodology

This chapter explains the processing of the socioeconomic, meteorological, climatic and land
use variables, as well as the description of the model used to identify the factors that trigger
forest fires in Cartagena del Chaira. The first section describes the study area in terms of loca-
tion, socioeconomic and climatic conditions, and also explains the importance of studying this
area. The second section is related to the land cover analysis, explaining the selection criteria
for the annual satellite images. In addition, it explains the PBCLL methodology used to clas-
sify the land cover by year and was used to determine the land cover in the study area between
2013-2021. The next section focuses on identifying the behavior and anomalies of humidity,
temperature, precipitation, Total ColumnWater Vapor (TCWV), and wind speed, by season
between 2013-2021 and their relationship with forest fires.

To contemplate the impact of climate change on the behavior of meteorological variables,
the fourth section describes the models, scenarios and historical data (1984-2014) selected to
predict different scenarios until 2049 in order to identify anomalies with current meteorolog-
ical data and their potential impact on forest fires under climate change. The identification of
driverswasdone through themodel description sectionwhere theMachineLearning (ML) tool
is explained in terms of input data, structure, training process and validation. Subsequently,
the selection of scenarios is determined to analyze the influence of each variable on forest fires.
These scenarios and the climate analysis were used to develop the proposed strategies using a
methodology that takes into account already design strategies, policies and plans by the govern-
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ment explained in depth in section 3.7. Finally, the delimitation, limitations and assumptions
necessary to develop the methodology are explained in section 3.8.

3.1 Study Area

Cartagena del Chaira (1.336111, -74.846667) is a municipality of the Department of Caquetá,
located in southern Colombia within the Colombian Amazon (Figure 3.1). The region has
32000 inhabitants in 12826 km2 where the Caquetá River runs through the municipality and
the Caguán River surrounds it on the east side. There are three morphological units present:
the eastern flank of the Eastern mountain range, the foothills, and the Amazon plain (Murad
and Pearse, 2018), where wetlands and tropical rainforest are the main ecosystems allowing a
high rate of biodiversity and endemism (Peel et al., 2007). Likewise, according to the Institute
of Hydrology, Meteorology and Environmental Studies (IDEAM, Spanish acronym), the av-
erage temperature is 25°C, while annual precipitation is 2500 mm, with a unimodal regime
due to the ITCZ and biological factors that cause high evaporation and humidity rates, with
the driest season being December, January and February and the wettest April, May and June
(Guzman et al., 2014).

Serranía del Chiribiquete National Natural Park is one of the most important protected ar-
eas on the Colombian Amazon, Cartagena del Chaira has 303981 ha (10% of the total area),
as well as areas of ecological importance giving particular significance to this zone (UNESCO,
2017). Despite this, there is a subtraction area in the municipality where the settlement was le-
galized in 16200000ha of forest reserve, a zone inwhich, in principle, an adequate, harmonious
and respectful intervention of the natural environment would be carried out, allowing accept-
able productivity for human settlements, for which the land use of the forest reserve could be
changed for reasons of public utility, social or economic interest (Instituto Nacional de los Re-
cursos Naturales Renovables y del Ambiente, 1985).

This particular legal status allowed human colonization and the expansion of licit and illicit
agricultural areas, making it an important zone in the context of the armed conflict and its sub-
sequent termination after the peace agreement. According to theDANE,Cartagena delChaira
is the second largest contributor to the department’s economy, basing its economy mainly on
the primary economy (i.e., agriculture, hunting, silvicurture, fishing and mining) and the ter-
tiary economy (i.e., generation of gas, electricity, water and services) contributing 6% of the
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Figure 3.1: Cartagena del Chaira location.

national GDP (DANE, 2021). All these factors allow for interesting socioeconomic, land use
and forest fire dynamics in this municipality that may be crucial in determining the fire drivers
in this zone.

3.2 Land Cover and Land Use Analysis

The prevalence of clouds in the tropics makes challenging data selection regardless of satellite
data resolution (Murad and Pearse, 2018). However being able to study the change in Land
Cover is determining to establish a relationship with forest fires drivers, hence here used Land-
sat 8 Level 2, Collection 2, Tier 1 images provided byUnited States Geological Survey (USGS).
This images contains atmospherically corrected surface reflectance and land surface tempera-
ture derived from the data produced by the Landsat 8 OLI/TIRS sensors (USGS, 2023) to
reduce the cloud interference.

Cartagena del Chaira Landsat 8 images were downloaded using Python3 through Google
Earth Engine (GEE) API. Multi-scene ensemble (see red rectangles of Figure 3.1 for spatial lo-
cation) per year in the period 2013-2021 with less than 20% cloud cover was used (Table 3.1).
Visible bands: Blue (B2), Green (B3), Red (B4), Near Infrared -NIR- (B5) band, Shortwave
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Infrared bands -SWIR 1- (B6), -SWIR 2- (B7) and Normalized Difference Vegetation Index
(NDVI) were downloaded with 30 meters resolution to be processed and find land cover clas-
sification in Cartagena del Chaira.

Year Path/Row Date (dd/mm)

2013
7/60 23/11
8/60 11/09
8/59 11/09

2014
7/60 31/03
8/60 19/12
8/59 19/12

2015
7/60 26/09
8/60 20/11
8/59 20/11

2016
7/60 01/02
8/60 11/03
8/59 11/03

2017
7/60 19/02
8/60 25/01
8/59 25/01

2018
7/60 18/09
8/60 09/09
8/59 24/08

2019
7/60 25/02
8/60 10/07
8/59 04/05

2020
7/60 27/01
8/60 22/03
8/59 22/03

2021
7/60 29/01
8/60 17/09
8/59 28/05

Table 3.1: Satellite data specifications used in Cartagena del Chaira, Caquetá‐Colombia.

3.2.1 Land Cover Classification

The mosaic classification was applied to the subset images for each year using the Phenology-
based Land Cover Classification (PBLCC) (Simonetti, E and Simonetti, D and Preatoni D,
2014). The PBLCC approach was applied because it has been successfully used for previous
Landsat classification in tropical regions and specifically in Colombia, because it accounts for
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seasonality (Casallas et al. 2022,Muñoz-Brenes et al. 2018, Simonetti, E and Simonetti, D and
Preatoni D 2014) and provides an accurate analysis that allows the correct identification of
drivers. The PBLCC has thirteen (13) classes (Table 3.2) that are used to classify pixel by pixel
each mosaic by an algorithm that uses the aforementioned bands. Comparison of the PBLCC
maps produces a cross-tabulation analysis to show quantitative ”from-to” percentage and area
changes by categorywas done annually on a pixel-by-pixel basis as well. Although Land cover is
of high importance for forest fires, it is not the only variable, meteorology, climatological, and
socio-economical variables can be essential to understandwildfire dynamics, which is why they
are centered in the next three sections.

Class ID PBLCC Class Description
WAT Water DeepWater bodies/Rivers (DWAT/SWAT)
SI Snow Snow / Ice

DWAT Water DeepWater bodies/Rivers (DWAT/SWAT)
CL Clouds Clouds
SV Shadowed Vegetation Shadowed / Low Illuminated Vegetation
SS Shadowed Soil Shadowed Soil / Burnt Areas
SPV Sparse vegetation Sparse Grassland/Sparse Shrub
OLD Other Land Dark Dark soil/rocks/sand
OLL Other Land Light Light soil/rocks/sand
TCD Tree Cover Dark Dense Forest/Dense Shrub
TCL Tree Cover Light Open Forest/Shrub
SHR Shrub Dense Shrub
GRS Grassland Dense Grassland/ Open Shrub

Table 3.2: PBLCC classification.

3.3 Meteorological Analysis

Meteorology is very important to study the development of forest fires (e.g., Jain et al. 2021).
This iswhy, first, data fromtheEuropeanCentre forMedium-RangeWeatherForecasts (ECMWF)
reanalysis (Hersbach et al., 2020) is downloaded with an hourly time resolution, and a spatial
resolution of 0.25x0.25 degrees (≈22.5km2) for the air temperature, wind speed, relative hu-
midity and TCWV for the period between 2010 to 2022. Hotspots information is used from
the Fire Information for Resource Management System (FIRMS), measured with the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) (NASA, 2023), and with the Visible
Infrared Imaging Radiometer Suite (VIIRS), for a period between 2002 to 2022. After down-
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loading the data, it is pre-processed the hotspots data, by removing the data points with less
than 80% of confidence in the measurement (Casallas et al., 2023) and with temperatures >
400 K (Kaufman et al., 1998), in order to identify those hotspot that are forest fires. Then the
data is split into days with (hereafter fire days) and without (hereafter non-fire days) hotspots,
since hotspots serve as a proxy to forest fires. These two data batches are then divided depend-
ing on their seasonality, producing a data batch per season (i.e., DJF, MAM, JJA and SON)
and also per type of event (i.e., with and without fires). Using these separated data we perform
two analyses, which are described below.

1. Having the data separated into seasons and events, we proceed to calculate composite
means of air temperature, wind speed, relative humidity andTCWV, for each season and
event. This produces 8 maps per variable, 4 of them related to fire events and 4 related
to non-fire days. Then from each fire day composite, the non-fire day composite is sub-
stracted, producing an anomaly per variable and per season. In terms of precipitation,
the composites are the seasonal sum of the fire and non-fire days. Then the precipita-
tion anomaly is calculated following the procedure of the other variables. This method
allows us to determine the atmospheric characteristics when a fire event is developing,
also accounting for seasonal changes.

2. Boxplots are plotted for each variable and season, accounting for the fire and non-fire
days. This procedure would complement the anomalies and would also show the sig-
nificance of the atmospheric characteristics between both events. To complement this
boxplot analysis an Analysis Of Variances (ANOVA) is implemented to calculate if the
mean difference between the two events is statistically significant.

These analyses are then complemented with climate change scenarios (section 3.4), to help
describe the possible risk that would develop in the future.

3.4 Climate Change Analysis

The database was downloaded from the CMIP6 project explained in chapter 2 using an en-
semble constructedwith three (3)models (CANESM5-CANOE,CNRM-ESM2-1, and IPSL-
CMGA-LR) for four (4) different climate change scenarios (SSP1.26, SSP2.45, SSP3.70, and
SSP5.85, see section 2 for details of the scenarios and models) in the period 2015-2049. The
models and scenarios were carefully selected, considering the surface data availability of the
study variables and the possibility of comparing the scenarios to analyze how future climates
would impact the development of forest fires. The ensemble reduces the uncertainty related to
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the models’ initial conditions, resolution and parameterizations. Simulation outputs are avail-
able on the servers of ECMWF, through the Climate Data Store (CDS) platform. This center
provides access to model outputs according to the selected climate change scenarios. There are
twoways to access the servers: (i) manually or (ii) using anApplication Programming Interface
(API). For this research, the API was used because it allows downloading data in an efficient
way. To access the API, the Python3 library cdsapi was used, which allows requests to be made
to CDS for variables, periods, models and areas of interest. For this research, (5) meteorologi-
cal variables (i.e., precipitation, temperature at 2m, relative humidity, total column water, and
wind speed) were downloaded.

The data were downloaded for two time periods, the historical (1984-2014), and the simu-
lated future (2015-2049)with amonthly temporal resolution and a spatial resolutionof 0.5x0.5
degrees, for the department of Caquetá (Lon: -74.8831, -72.7652; Lat: -1.1016, 2.9873). This,
in order to calculate the differences of the selected variables between the historical period and
the simulated future period, something that hereafter is called anomalies. The anomalies are
defined as the subtraction between the climatology of the historical period and the climatol-
ogy of the future period. In other words, the temperature anomaly is calculated by subtracting
the average temperature of each pixel in the historical period from the average temperature of
each (same) pixel in the simulated period. The same procedure is used for relative humidity,
wind speed, and TCWV but not for precipitation. In the case of precipitation, it is first accu-
mulated annually, and then averaged for each period, in order to be subtracted (Casallas et al.,
2023). The anomalies serve as input to produce maps that allow analyzing spatial differences
and also magnitudes of changes that can be compared with the atmospheric conditions when
a wildfire is developing, giving an idea of the future behavior of the wildfires in the region of
interest.

3.5 Socio-economic and Territorial Data

Taking into account the variables mentioned in the previous chapter including in a socioeco-
nomic drivers analysis and inorder to improve andmake amore complete socioeconomicdriver
selection, here were used twelve socioeconomic variables. For this reason, the following para-
graphs explain why variables were chosen, their definition and where were obtained.

Demographic information (Urban and Rural Population) was obtained from the munici-
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palities’ population censusmade byNationalAdministrativeDepartment of Statistics (DANE,
Spanish acronym) and its projections to avoid gaps in the data, defined as the number of people
in Cartagena del Chairá (DANE, 2023c). The economic data was also obtained from DANE
and are three variables. First, GDP was taken from the quarterly financial reports of the mu-
nicipality by percentage, represents the combined value generated by all domestic producers
in an economy, including product taxes and excluding subsidies that are not accounted for in
the product value. The calculation does not include deductions for the wear and tear of manu-
factured assets or the depletion anddeteriorationof natural resources (TheWordBank, 2023a).

Second, Informal Work is described as the Percentage of the total population that fill in
one or more of the following categories (i) Private employees and laborers working in estab-
lishments, businesses or enterprises that employ up to five persons in all their agencies and
branches, including the partner, (ii) unpaid family workers, (iii) unpaid workers in enterprises
or businesses of other households, (iv) domestic employees, (v) day laborers or laborers, and (vi)
self-employedworkersworking in establishments up tofivepersons, except independent profes-
sionals, employers in enterprises of five workers or less, Government workers or employees are
excluded (DANE, 2023a). Finally, the third economic variable obtained as well from DANE
is Long Term Unemployment refers to people who have been unemployed for 12 months or
more (DANE, 2023b). Informal Work and Long Term Unemployment are part of the indi-
cators of the Multidimensional Poverty Index (MPI) by DANE, for this reason, they are in
percentages, and were taken separately for the rural and urban populations in order to make a
more specific analysis into Cartagena del Chairá (DANE, 2023a).

In order to contemplate Educational variables that could be related to forest fires Low Edu-
cational level indicator fromMPI was taken. It is defined as the percentage of the population
with less than 9 years of education (DANE, 2023a). For the Poverty category two variables
were included, theGINI coefficient taken byDANEeverymonthwas included to contemplate
monetary poverty as a measure of the distribution of income among households (in this case)
within the economy. Thus aGINI index of 0 represents perfect equality, while an index of 1 im-
plies perfect inequality (TheWord Bank, 2023b). The other variable in the poverty category is
aMPI, this is an integrated index that allows the analysis ofmultiple dimensions of poverty that
are experienced simultaneously by households, grouping 15 indicators in 5 categories: educa-
tional conditions of the household; conditions of children and youth; work; health and access
to public utilities and housing conditions. Each dimension has the sameweight (20%) in the in-
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dex and each indicator has the sameweight within each dimension (Oviedo et al., 2021). Thus,
when a household, and all the people who compose it, present deprivations in at least 5 of the
15 indicators (33.3% of theMPI) according to the cut-off point defined for each indicator, it is
considered multidimensionally poor (Angulo et al., 2020).

Finally, the variables associatedwith victims of armed conflictwere obtained from theObser-
vatory ofMemory and Conflict (OMC). The first variable, related toMassacres, is understood
as the intentional homicide of four (4) or more people in a state of defenselessness and in equal
circumstances of mode, time and place, and which is distinguished by the asymmetrical rela-
tionship between the armed actor and the civilian population, without interaction between
armed actors (CMO, 2023). Forced Disappearance is the deprivation of the freedom, against
the will (arrest, detention, kidnapping or hostage-taking) by agents of the State, members of
illegal armed groups that take part in the armed conflict, orwith their authorization, support or
acquiescence, followed by their concealment and/or refusal to acknowledge such deprivation
or to provide information on their whereabouts, removing them from the protection of the
law (Congreso de Colombia, 2000).

Recruitment of Children and Adolescents is understood as when minors under 18 years of
age are forced to participate directly or indirectly in hostilities or armed actions for the pur-
pose of armed conflict (Congreso de Colombia, 2000). While, displacement, was obtained
from the Center for Economic Development Studies (CEDE, Spanish acronym) for the pe-
riod 2013-2017 and from the United Nations Office for the Coordination of Humanitarian
Affairs (OCHA) for the period 2018-2021. It is defined as a situation where a person has been
forced to migrate within the national territory, abandoning their home or usual economic ac-
tivities, because their life, physical integrity, personal safety or freedom have been violated or
are directly threatened by any of the following situations: internal armed conflict; internal dis-
turbances and tensions, generalized violence, massive violations of Human Rights, violations
of International Humanitarian Law or other circumstances arising from the above situations
that may drastically alter public order (Congreso de Colombia, 1997).

37



3.6 Drivers Identification: Model Description

3.6.1 Feature Selection

Forest fires are difficult to simulate due to the large number of variables that are related to them.
Several studies (e.g., Jain et al. 2021, Casallas et al. 2022) have shown that fires are highly af-
fected by meteorological conditions such as air temperature, humidity and wind speed. Being
the former two themost important since the amount ofwater and the temperature canproduce
favorable conditions for a fire to develop and start. In fact, in Colombia, seasonal changes are
the ones that produce the largest modification to the number and location of wildfires, since
the humidity and temperature change depending on the ITCZ. This means, that places far
from the ITCZ develop a larger number of fires, since there are not many moisture sources,
the temperature is stronger and not many convective events develop, leading to small amounts
of precipitation (Guzman et al., 2014). This is the reason were included the wind speed, air
temperature, relative humidity and total column water vapor. These last two, are included to
account for the amount of moisture but also its relative value. The fires, not only depend on
meteorology, they also depend on the fuel (land cover) and the socioeconomic variables.

On one hand, the land cover is important since the type of vegetation can be favorable to the
development of forest fires (e.g., Murad and Pearse 2018, Albert et al. 2023), which is why we
include the land cover categories in themodel. On the other hand, fires in Colombia are highly
related to socioeconomic variables since the socioeconomic dynamic could produce enormous
changes in the dynamics of the fire (Bautista-Cespedes et al. 2021, Quan et al. 2022, Gomez
et al. 2014). Socioeconomic data were carefully selected based on the monthly available data
and representative ones for 2013-2021 from governmental agencies, taking into account those
variables studied in previous studies related to land changes and forest fires (Bautista-Cespedes
et al. 2021, Quan et al. 2022, Gomez et al. 2014), as well as considering those that were never
studied and could have incidence in forest fires drivers. Also those without gaps in the study
period at the municipality level in order to be able to analyze which high accuracy of the rela-
tionship with Forest Fires in Cartagena del Chaira. For this reason, some variables that could
have incidence in forest fires were not considered.

Table3.3 shows the twelve (12) studies of socioeconomic variables (see chapter 2 for the def-
inition of each one) in Cartagena del Chaira and their source. It is important to mention that
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the author created her own database with all the variables between 2013-2021 by month to be
used in the model.

Category Variable Expression Source

Demographic Urban Population Number of
people

Population and back projections
Rural Population

Economic
GDP - Trimester GDP

Informal work Percentage Informal Work Indicator
Long-Term Unemployment Percentage Long TermUnemploymeny Indicator

Education Low Educational Level Percentage Low Educational Level Indicator

Poverty GINI - Monetary poverty
Multidimensional poverty - MPI

Victims
Armed
Conflict

Massacres
Number of
people

Victims
DatabaseForced Disappearance

Child and Adolescent Recruitment
Displacement CEDEDatabase and OCHADatabase

Table 3.3: Socioeconomic variables studied between 2013‐2021 in Cartagena del Chaira, Caquetá associated with forest
fires drivers.

3.6.2 Input/output matrix description

After the VIF method is performed, five meteorological variables (i.e., Air temperature, Rel-
ative humidity, Precipitation, TCWV and wind speed), eight socioeconomic variables (i.e.,
Population, GDP, Informal work, Long-Term Unemployment, low Educational Level, GINI,
Displacement, Victims Armed Conflict) and the land cover are selected as inputs for the ML
technique designed. The meteorological variables have an hourly resolution, different from
the socioeconomic ones that are collected monthly, which means that for the model the vari-
ables are hourly static but change dynamically everymonth. The same is true for the land cover,
which has a yearly resolution, so its input is static but changes monthly. All the variables are
integrated into the ERA5 data spatial resolution before entering to the model. The X-Tensor
(input) includes the aforementioned variableswith their related temporal and spatial resolution.
The Y-matrix (output) is created by the air temperature from the ERA5 data but includes the
brightness temperature from the hotspots of theMODIS dataset. In other words, we took the
brightness temperature from hotspot, and its position and replaced it into the same position
as the ERA5 data, to be sure that the output include forest fire values for detection.
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Figure 3.2: Neural network structure. Notice that every box has the number of neurons/filters in the layer and that the
dropout percentage of a layer is also indicated.

3.6.3 Structure, training and validation

The Neural Network model structure is shown in Figure 3.2 with its inputs and output. The
model is constructed usingTensorflow-2.4.1 (Abadi et al., 2015) andKeras-2.4.3 (Chollet et al.,
2015) libraries fromPython-3.9. Its structure and type of networks are shown inFigure 3.2 and
were identified by using grid-search and it is based onCelis et al. (2022) convolutional network
structure. The loss selected is theMean Square Error (RMSE), Adam (Kingman and Ba, 2014)
is used as an optimizer and for the activation, the dense layer used ReLu (Fukushima, 1975),
meanwhile the LSTM layers (Hochreiter and Schmidhuber, 1997) used sigmoidal (Cybenko,
1989).

For the training we use 50 epochs, and it is declare if the variables are static or dynamic in
order for the training to produce the best results, as was previously done by Agudelo-Hz et al.
(2023). The training set consist on 80%of the data and the remaining 20% is used for validation.
From this 20%wemake sure to include days with and without wildfires, and at least 5 days per
month, with emphasis on days fromDJF andMAM season. To prevent overfitting we include
dropouts but also an Early stopping method (Ndiaye et al., 2019).
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To validate the model we calculate RMSE – equation 3.1, the Mean Bias Error (MBE) –
equation 3.2, and the Pearson Correlation (r) – equation 3.3, from the domain mean, so that
we only have a time series of data, in which the wildfires can be identified.

RMSE(x, y) =

√∑N−1
i=0 (xi − yi)2

N
(3.1)

where, x represents the prediction, y is the observation, i is each of the data points in the calcu-
lation, and N is the total number of data points.

MBE(x, y) =
1
n

N∑
i=0

(xi − yi) (3.2)

The variables here are the same as in equation 3.1

r(x, y) =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

∑n
i=1(yi − y)2

(3.3)

The variables of this equation are the same as equations 3.1 and 3.2 but with the addition of y
and x that represent the mean of the observations and the predictions, respectively.

3.7 Propose Strategies

MLhave been used for a large number of applications, some of which have focused on the pre-
diction of meteorological variables (Tompkins and Semie, 2021), air quality (Celis et al., 2022)
and wildfires (e.g., Coughlan et al. 2021), producing reliable forecasts and showing their po-
tential to be used to understand the importance of several variables (McGovern et al., 2019),
and also to create sensitivity experiments that could be used to evaluate strategies or scenar-
ios (Casallas et al., 2023; Agudelo-Hz et al., 2023). Casallas et al. (2023) performed sensitivity
analyses to understand the tropospheric ozone variations due to the COVID-19 lockdowns,
showing the potential ofML to process understanding. Following this research road, Agudelo-
Hz et al. (2023) use aMLmodel to create scenarios of land cover change depending on possible
future conditions and evaluate their possible impacts on the Amazon. Here we use a hybrid of
these two approaches to determine which meteorological and socio-economic variables must
be measured, evaluated and in the case of the socio-economic variables improved by, for exam-
ple, enacting policies, or creating employment.
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In this sense, we modify all the input variables of the ML model (Figure 2) except the air
temperature. Todo this, we increase/decrease each variable by 30%, to thenquantify the change
between the control prediction and the experiments, using Bland-Altman plots (Altman and
Bland, 1983; Bland and Altman, 1986). This, with the idea of identifying the variables that
produce the largest sensitivities to the wildfires and also in order to create strategies that could
help to efficiently mitigate the number of wildfires. Regarding the aforementioned strategies,
they are developed based on the already existing policies and plans of the study region (e.g.,
Vargas-Correa 2019), but they are also designed to complement them.

3.8 Delimitation, Limitation and Assumptions

Themethodology is focused on anAmazonianmunicipality in Colombia, taking into account
the data available and relevant to this specific context. However, it may be replicated in other
municipalities even at the national and/or regional level. Nonetheless, it is important to take
into account some limitations and assumptions that must be made to achieve the develop-
ment of this research. In order to prioritize high-quality satellite images, the image taken from
path/row 7/60 was taken on another date to achieve a cloud cover less than 20%.

On the other hand, the main limitations are related to the socioeconomic data, due to the
need to havemonthly data for each variable, for this reason, some variables such as; Population,
InformalWork, LongTermUnemployment, LowEducational Level it was necessary to assume
that through the months those values do not change. In the case of GDP, the trimester GDP
was the most specific value obtained by DANE, for this reason, this value was divided into
three and put for the months of the trimesters as appropriate. For the controller experiments
in the ML model when land cover is changed it was assumed that all pixels in the mosaic are
transformed into the same category to make possible a good performance of the model and to
make a selection a number of experiments to work with, otherwise, each pixel would have 12
possible categories each year.
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4
Results and Discussion

This chapter commences with an account of the progression of wildfires in Cartagena del
Chairá. Subsequently, our focus shifts to illustrating the prevalent meteorological conditions
during wildfires occurrences in the region, aimed at comprehending the driving factors behind
these incidents. We proceed to elucidate the vegetation cover that exhibits a stronger correla-
tionwith fire development in the region, aswell as the interplay between vegetation and human
practices. Following this, a climatological analysis is performed for the near future (up to 2049)
to discern potentially heightened wildfire risks arising from atmospheric conditions. Conclud-
ing this section, we subject a MLmodel to assessment and subsequently employ it to appraise
strategies. These strategies illuminate potential avenues for mitigating the risk associated with
fires in the region.

4.1 ForestFirestemporalbehaviorandmeteorolog-
ical conditions

Forest fires inCartagena del Chairá through the years have been rising significantly (Figure 4.1),
showing a positive tendency. In 2018 there are a peak (+1000 hotspots), coinciding with the
FARC-EP demobilization as a result of the peace agreement signed in 2016. In the follow-
ing years number of forest fires decreased but still are higher than in previous years, in 2022
was present another peak in the first quarter of the year that could be attributed to different
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Figure 4.1: Cartagena del Chairá forest fires behavior.

Figure 4.2: Cartagena del Chairá forest fires behavior by seasons.

socio-environmental causes. In thi sense, there is a clear behavior over the years in Cartagena’s
del Chairá Amazon forest (Figure 4.2), where DJF and MAM are the seasons with the largest
number of hotspots, whereas the seasons with fewer fire days are JJA and SONduring the stud-
ied period, suggesting that different behavior between seasons could be promoted in part for
some meteorological variables that are changing over the year.

Forest fires’ spatial location (Figure 4.3) since 2010 follows a tendency, there are located
northwest of Cartagena del Chairá and surrounding the river Caquetá. This behavior is in-
fluenced by the subtraction zone (see Figure 3.1 for spatial location) due to it allows landcover
change from native forest to agricultural and cattle practices, principally. Those practices are
being expanded and being more intense through the years and the farmers, peasants even large
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Figure 4.3: Forest Fires Spatial location on Cartagena del Chairá.

industries used fires as slash and burn technique as the fastest and cheapest way to clear the
terrain to plant new crops, expand existing ones, and/or introduce new activities in the area
(Armenteras et al., 2019). Despite these practices being legally constituted by the subtraction
law (InstitutoNacional de los RecursosNaturales Renovables y del Ambiente, 1985), over the
years, especially on the boreal winter (DJF and MAM) are rising forest fires due to a set of cir-
cumstances that affects the communities and the Amazon.

For this reason, meteorological variables were analyzed for Cartagena del Chairá in order to
determine the differences between seasons and non-fire and fire days on the forest fires devel-
opment. The first variable analyzed was the temperature, showing that fire days have a higher
yearly maximum (310 K) and the median (298 K) is up to quartile Q3 of non-fire days (Fig-
ure 4.4a). Regarding seasonal analysis especially those with the highest number of forest fires
(DJF andMAM),was found that they have similar behavior, on fire days have the shortestmaxi-
mums andhighestminimums, also themedian inboth seasons is 300K,while the quartileQ1 is
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Figure 4.4: Boxplot to meteorological variables in Cartagena del Chairá split by non‐fire days and fire‐days.

up to non-fire daysQ3. Those seasons present a positive anomaly (Figure 4.5a and Figure 4.5b)
showing values up to 5 K with the maximum on the northwest, especially in MAMwhere the
hotspots are mostly concentrated in this zone and season. In contrast, JJA (Figure 4.5c) and
SON (Figure 4.5d) presents a mild positive anomaly with values around 2 to 0 K, which sug-
gests that in those seasons the temperature does not increase too much and for this reason,
forest fires occur in a lower quantity and magnitude.

The wind speed on fire days has a higher yearly median compared to non-fire days (Fig-
ure 4.4b). In relation to the seasonal behavior, DJF on fire days has a median above non-fire
days, while MAM and SON have a fire days median above the quartile Q3 of non-fire days.
On the contrary, in JJA the behavior is similar in non-fire days and fire days (Figure 4.4b) this
could be important taking into account this is the season with fewer forest fires events. The
anomaly has positive values (up to 3 m/s) in DJF, MAM, and SON (Figure 4.6a, Figure 4.6b,
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Figure 4.5: Temperature anomaly in Cartagena del Chairá between non‐fire days and fire‐days. Where the pink dots were
the forest fires in 2013‐2022
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and Figure 4.6d, respectively) located in theNorth of the municipality, where are locatedmost
of the forest fires. Nevertheless, in JJA there are negative anomalies up to -3 m/s that could
have an incidence in the few number of hotspots in this season.

On the other hand, humidity in DJF and MAM is lower on fire days, having its Q3 quar-
tile below the Q1 quartile of non-fire days Figure 4.4c. Furthermore, humidity values in JJA
have the interquartile range between Q1 and the median of the non-fire days boxplot. In con-
trast, SONhas similar behavior between fire and non-fire days, andmaximums in non-fire days
without season distinctions are 100%. The anomaly of humiditywas also evaluated (Figure 4.7)
finding that DFJ andMAM can decrease up to -30% when a forest fire is present, especially in
the north of the department. However, in the second half of the year JJA (Figure 4.7c) did not
show changes in the humidity between fire and non-fire days, SON for its part (Figure 4.7d),
has an anomaly up to 10% promoting a more humidity atmosphere associated to more favor-
able conditions to decrease the risk associated to ignition of forest fires (Jain et al., 2021).

TCCWV yearly behavior has on fire days the interquartile range below the non-fire days
quartile Q1, moreover, fire days have a lower minimum and maximum in comparison to non-
fire days Figure 4.4d. Seasonal analysis shows that DJF and MAM have lower interquartile
range values than non-fire days. In the seasons with fewer hotspots (JJA and SON) the values
are similar between fire and non-fire days, the median in both cases is near 50 mm. However,
themaximumvalues in these seasons on non-fire days are lower in comparison to fire days. The
TCWV anomaly shows two highlights, as well. DFJ and MAM (Figure 4.8a and Figure 4.8b,
respectively) present a negative anomaly with values around -12mm, especially in the north of
Cartagena del Chairá, that is more evident in the second quarter. JJA and SON (Figure 4.8c
and Figure 4.8d, respectively) have a positive anomaly up to 4mmwith the opposite spatial be-
havior, the highest values are on the southeast part of the municipality.

Regardingprecipitationbehavior, is significantly lower in all seasonsonfiredays (Figure 4.4e)
having the Q3 quartile and the maximum near 0 mm. On non-fire days, the maximum is be-
tween 0.75 mm and a maximum 1.50 mm in MAM, Q3 quartile in all the season are around
0.60, while the minimum is near 0 mm in all the season and on the yearly values. The anomaly
has an interesting behavior, according to the Figure 4.9 in DJF the difference between fire days
and non-fire days is not up to -3mm. Meanwhile, in MAM the precipitation in fire days has
the highest values (up to -15mm) in the north of Cartagena del Chairá. JJA and SON have
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Figure 4.6: Wind speed anomaly in Cartagena del Chairá. Where the pink dots are the forest fires between 2013‐2022
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Figure 4.7: Humidity anomaly in Cartagena del Chairá. Where the pink dots are the forest fires between 2013‐2022

50



Figure 4.8: TCWV anomaly in Cartagena del Chairá. Where the pink dots are the forest fires between 2013‐2022
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negative anomalies as well with similar values as MAM specially JJA, suggesting this variable
could not be a determinant factor.

Researchers are finding positive relationships betweenmeteorological conditions and forest
fires (e.g., Casallas et al. 2022; Jain et al. 2021; Kosovíc et al. 2023). Three main components
of fire (heat source, fuel and oxygen) are influenced by atmospheric conditions. According
to Kosovíc et al. (2023) fire behavior and spread in forest fires is a result of a coupled system
influenced by atmospheric conditions, so interactions betweenweather and forest fires are char-
acterized by complex feedbacks (Kosovíc et al., 2023) that can intervene in the development of
fires. Despite that, the research on the relationship betweenmeteorology and forest fires in the
Amazon is not widely studied. Authors such as Ma et al. (2022) claim that in the south Ama-
zon (Brazil), most meteorological variables were not statistically significant to the forest fires
occurrences based on a global model, and on the contrary, directly related to human activities
exhibiting close spatial relations with deforestation (Ma et al., 2022). However, Cavalcante
et al. (2021) mentioned that in the Brazilian Amazon, most hotspots occurred in deforested
areas and native forests, in this sense, is important to study the complex dynamic of forest fires
in each specific spatial, social, economic, and environmental context.

Authors such as Casallas et al. (2022) did the first efforts to try to understand the role of me-
teorology on the Colombian Amazon, finding a relationship between different meteorological
variables and fires in the area. Seasonality shows how DJF andMAM are the months with the
characteristics that lead to improved conditions of ignition and the forest fire spreads. The com-
bination of meteorological conditions such as the increase in temperature in the northwestern
area of the municipality, as well as the increase in wind speed in the same subzone raises the
rate of fire spread (Kosovíc et al., 2023) (especially on MAM). At the same time, winds also
affect the rate of fire spread indirectly by enhancing the drying of dead and live fuels that are
also affected by precipitation which, in turn, acts on humidity, and the TCWV especially on
MAMdecreases in general on fire days but decreases evenmore on the seasons with the highest
number of fires (DJF andMAM), affecting the chance to interrupt the forest fires spreads.

In these conditions, the heat released by fires results in local circulation potentially igniting
new forest fires or resulting in the formation of pyrocumulus modifying the weather (Kosovíc
et al., 2023). This cyclical behavior could be presentedmore frequently andmore pronounced
due to weather extremes resulting from climate change, affecting in the short term the health,
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Figure 4.9: Precipitation anomaly in Cartagena del Chairá. Where the pink dots are the forest fires between 2013‐2022
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housing, job, and food the Cartagena’s del Chairá communities, an important zone with an
exceptional social, economic, and political dynamic.
In summary, wildfire occurrences are concentrated in the northern and central sectors of the

region, closely tied to positive anomalies in temperature and wind speed, along with negative
anomalies in RH, TCWV, and precipitation during boreal winter. Conversely, boreal summer
experiences fewer wildfires in the northern region, linked to elevated air temperatures, a dry
environment characterized by reduced RH and TCWV levels, and a shortage of rainfall. The
fact that wildfires emerge in specific zones within our study area suggests that the type of land
covermay significantly influencewildfire development. This drives our focus in the subsequent
section on analyzing the land cover characteristics of the region.

4.2 Climatic Change conditions

The climatic condition has particular importance in forest fires on the Colombian Amazon
due to the nowwell-known importance ofmeteorological conditions for the development and
ignition of forest fires, as well as the susceptibility of this zone to changing climate combined
with the intensification, expansion, and replication of the socioeconomic practices that could
trigger a tipping point. For this reason, temperature, wind, humidity, and precipitation were
evaluated climatologically and by season in the short term (up to 2049) in four different climate
change scenarios (SSP1.26, SSP1.24, SSP3.70, and SSP585) with 3 coupled models (see § 3.4
for details) to establish the implications of changes in climatological variables on forest fires in
Cartagena del Chairá.

The first variable analyzed is the temperature, the climatological behavior (Figure 4.10) in-
dicates in all the scenarios there is an increment. SSP126 scenario shows an increase between
0.5 and 1.5 K. This behavior prevails in the other 3 scenarios, nonetheless, on the SSP245 the
increment is between 1.5 to 2.0 K, SSP370 has values between 2.5-3.0 K, and SSP585 has the
largest increment between 3.0 to 3.5 K. The subzone with the highest increment is southeast
of Cartagena del Chairá, the area with the lowest temperature increase so far, suggesting that
this could promote the ignition and spread of forest fires, affecting part of theChiribiqueteNa-
tional Natural Park, a protected area declared by UNESCO as a cultural heritage site, Caguán
fluvial river roads and unexplored rainforest.

The analysis by season for each variable establishes interesting findings. Taking into that
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Figure 4.10: Climate change scenarios for temperature up to 2049
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the biggest forest fires in number and magnitude are in DFJ and MAM, these two seasons are
shown in the present chapter in order to analyze the predicted changes in differentmeteorologi-
cal variables. The temperature inDJF (Figure 4.11) for SSP126has a small increment of around
0.5 K, on SSP245 is higher (2.0 K), nonetheless on SSP370 and SSP585 the temperature could
increase up to 3.5 K. This season has the same spatial behavior on Figure 4.10 indicating that
the probability of increasing fires is higher as the scenarios change, being the highest in SSP858
especially on the southeast part of the municipality.

According to themodels, the temperature on the scenarios onMAM (Figure 4.12) is similar
in magnitude to DJF, especially on SSP126 which has values near to 0.5-0.75 K. The tempera-
ture in this season on SSP245 and SSP370 could increase around 1.25 to 1.75 K, respectively.
These values are lower in comparison to the previous season. On SSP585 the temperature is
lower than SSP370 and SSP585 inDJFwith 1-1.25K. In this season, the highest increases are in
the southwest part where the subtraction zone has allowed colonization, land clearing and the
entry of new agro-commercial practices to begin in recent years at the mouth of the Caquetá
River. The intensificationof these practices and the increase in temperature in the coming years
will increase the probability of a greater number of forest fires of high duration andmagnitude.

Wind speed climatology (Figure 4.13) shows a small increment in the first scenario SSP126
whit a reduction of -10 m/s uniformly throughout the municipality. Whereas SSP245 has not
a significative change, even so at the north has a smooth increment (0.05 m/s). On the other
hand, the SSP370 scenario (Figure 4.13c) shows an increment of up to 0.05 m/s, while the
SSP585 has an increment of up to 0.15 with the highest wind speed north of Cartagena del
Chairá.

Some authors suggest that the increment in the wind speed could increase the probability of
ignition and spread of forest fires (Kosovíc et al., 2023 and Brando et al., 2020). For this reason,
was analyzed the seasons (boreal winter) with the highest relevance in relation to the number
and magnitude of forest fires. DJF’s first scenario SSP126 (Figure 4.14a) shows a different be-
havior in comparison to the other three evaluated. The wind speed according to this scenario
could decrease up to -0.20 m/s, however, could have an increment in the north of the munici-
pality near to 0.10 m/s. SSP245 (Figure 4.14b) scenario has not shown significant changes in
most of the municipality despite a subzone in the north with values up to 0.10 m/s. The be-
havior of SSP370 (Figure 4.14c) and SSP585 (Figure 4.14d) is similar to each other apart from
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Figure 4.11: Climate change scenarios for temperature scenarios in DJF up to 2049
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Figure 4.12: Climate change scenarios for temperature scenarios in MAM up to 2049
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Figure 4.13: Climate change scenarios for wind speed scenarios up to 2049
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the fact that SSP585 has a higher increase in the north (0.30m/s). The rest of the municipality
in both scenarios was values between 0.10-0.15 m/s.

The behavior in MAM (Figure 4.15) is different from the previous season. The changes
in this season are smoothies, not above 0.03 m/s and below -0.15 m/s. In the first scenario
(SSP126) has the largest decrease in the entire municipality with values close to -0.12 m/s,
SSP245 has a mean value of -0.06 m/s. Nonetheless, on SSP370 (Figure 4.15c) has an incre-
ment on the west part with values near 0 in the center, and on the east a decrement below -0.03
m/s. While the SSP585 scenario has a smooth increase in the north (0.03 m/s) and a decrease
to -0.03 m/s in the rest of the municipality. The wind speed projections establish an intensity
increment at the north part of Cartagena del Chiará inDJF, there is a subzone with the highest
number of forest fires, the areawith the greatest agricultural activity in themunicipality and the
main urban centers. Suggesting that an additional increase in wind speed, fires may spread at a
higher speed and may have a greater magnitude. On the other hand, in MAM the wind speed
decreases, this behavior may favor in climatological terms so that forest fires do not increase.
However, there may be feedback that do not involve wind speed and promote the increase of
fires in that season.

For this reason, humidity projections were made. The climatological behavior (Figure 4.16)
for each scenario shows SSP126 values near 0 in the north of the municipality and decreases
with values up to 1.5% in the south. While SSP245 indicates a decrease around -1 to -2 %. The
SSP370 and SSP585 scenarios have the highest decreases principally in the southeast part of
the municipality with values between -3 ad -6%, respectively. Noting that it could increase the
probability and facilitate the ignition of forest fires due to the drying of the atmosphere and
fuel and the relationship according to meteorological data between low humidity values and
the activity of hotpots.

The analysis of DFJ (Figure 4.17) is different for the first scenario (SSP126), which presents
an increase throughout themunicipality, especially in the north. However, in SSP245, SSP370
and SSP585 the scenarios suggest a decrease in humidity more intense in each scenario for
SSP245 near -1%, SSP370 and SSP585 with values from -1 to -6% with the lowest values in
the south. Being DJF the most relevant season, the increase in humidity in the first scenario is
favorable for not increasing forest fires; however, authors (Armenteras et al., 2006, 2020; Jain
et al., 2021) suggest that this scenario is less and less likely to occur. Therefore, an additional
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Figure 4.14: Climate change scenarios for wind speed scenarios in DJF up to 2049
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Figure 4.15: Climate change scenarios for wind speed scenarios in MAM up to 2049
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Figure 4.16: Climate change scenarios for relative humidity scenarios up to 2049
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decrease in the number of fire days would help to prolong the events and the availability of
fuel. Unlike the behavior shown in DFJ, in MAM (Figure 4.18) in all scenarios the humidity
increased, with values of up to 6% in the municipalities near Cartagena del Chiara, and max-
imum values in this municipality around 4% (SSP585), the lowest increase is in SSP370 with
minimumvalues around0.5%, SSP245 andSSP126have a similar behavior between them,with
values between 1-1.5%. These projections would favor maintaining and increasing the percent-
age of humidity in this municipality avoiding the increase of forest fires.

Precipitation has an important role in the development of forest fires, absence of rainfall
could increase forest fires and an increment of it can extinguish hot spots and control fires. In
this sense, the evaluation of the precipitation in the climate change context is indispensable.
The climatological analysis using the scenarios (Figure 4.19) presents an increment between
200 mm/year (SSP585) and 500 mm/year (SSP126), SSP245 and SSP370 have values around
300 - 400 mm/year. Suggesting the Amazon Rain Forest specifically in Cartagena del Chairá
could increase the amount of precipitation that falls on themunicipality decreasing in number
and magnitude of the forest fires. Nonetheless, is important to take into account that the pre-
cipitation events could bemore intense (more water falling in a fraction of time) and not more
days with rain. In this case, the interaction with forest fires development could change.

For this reason, the precipitation in the season with special importance was analyzed. The
rainfall on DJF (Figure 4.20) shows for SSP126 an increment over 135 mm/year describing
an excellent scenario to decrease the number of forest fires, besides this scenario, the other
three have less precipitation. For SSP245 on Cartagena del Chairá could increase up to 90
mm/year, SSP370 around 45mm/year, however, could be zones where not increase the precip-
itation, especifically in the noth. SSP585 has an increase below 60 mm/year. The scenarios for
MAM (Figure 4.21) present a higher increase compared toDJF. For SSP126 the increase is 220
mm/year, SSP245 has in the southeast maximum values of 300 mm/year and in the northwest
the lowest values (240 mm/year). While SSP370 has in the northwest around 220 mm/year,
however, in the rest of the municipality it has values close to 280 mm/year. SSP585, on the
other hand, shows the greatest increase with a homogeneous behavior above 320 mm/year. In
this sense, rainfall can preserve the amount of water in the fuel, soil and atmosphere to improve
the environment and prevent the increase of forest fires.
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Figure 4.17: Climate change scenarios for relative humidity scenarios in DJF up to 2049
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Figure 4.18: Climate change scenarios for relative humidity scenarios in MAM up to 2049
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Figure 4.19: Climate change scenarios for precipitation scenarios up to 2049
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Figure 4.20: Climate change scenarios for precipitation in DJF up to 2049
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Figure 4.21: Climate change scenarios for precipitation in MAM up to 2049
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Projections of climate change in the coming decades underscore the need to counteract the
growing risk of fires in order to conserve the Amazon forests (Brando et al., 2020). Clima-
tology in Cartagena del Chairá suggests that temperature, humidity and precipitation are the
variables that most frequently influence the initiation and evolution of forest fires (Kosovíc
et al., 2023). According to Cochrane and Barber (2009), if temperatures increase and precipi-
tation decreases, potential fuels that are normally toowet to burnwill dry outmore quickly and
more frequently, thus increasing the susceptibility of forests to burn. In Cartagena del Chairá,
temperature increased, however, precipitation also increased, making conditions favorable for
reducing the rate of drying. However, if deforestation increases simultaneously, the average
precipitation level could be reduced, resulting in net desiccation (Cochrane and Barber 2009;
Costa and Foley 2000).

The relationship between precipitation and fire potential is complex, even if the net precipi-
tation rate is positive it cannot be argued that fire days will decrease, and there may be more
intense rainfall events and drought seasons. According to Kosovíc et al. (2023) changes in
weather patterns due to climate change can prolong the local hot season by decreasing humid-
ity, as shown in the scenarios for this area of the Colombian Amazon, thus making droughts
an explosive component for forest fires due to preconditioning and surface conditions. Finally,
wind speed has relevance in DJF especially in the northeast of the municipality since it is the
area where a significant increase in wind is presented. Its relevance is given mainly because it
allows understanding the characteristics of wildfire spread, since it dictates how fast and where
a fire will move (Schütze andWalz, 2021), however, this analysis should be combinedwith that
of landcover given the importance of the fuel type and its spatial distribution due to its deter-
mining role as fuel (Armenteras-Pascual et al., 2011).

This section delineates how meteorological variables are projected to either favor or hinder
wildfire development in 2050. A pivotal finding emerges: a radiative forcing increase beyond
2.6 Wm−2 could exert substantial impacts on the region, particularly evident during boreal
summer, fostering favorable wildfire conditions year-round. While increased precipitationmit-
igates these impacts, rising temperatures and decreased RH in several scenarios underscore the
urgency of acknowledging climate change and instigating strategies and policies for adaptation
and mitigation. These measures are crucial, as urban centers, ecosystems, and vital economic
activities are vulnerable to the cascading effects of climate change and wildfires.
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4.3 Forest Fires Drivers

This section is focused on identifying and analyzing the principal socioenvironmental drivers
on the Cartagena del Chairá in the Colombian Amazon rainforest. For this, was studied the
land cover change from 2013 to 2022 and the influence of agriculture in the land cover change.
On the other hand, socioeconomic variableswere evaluated through the 1D-BDLMto identify
the importance of each variable explained in section 3.6 in the following section to design and
prioritize the strategies.

4.3.1 Landcover

The landcover classification area (Figure 4.22) has four main categories; Open Forest (TCL),
shrubs (SHR), and grassland GRS, in less measurement fragmented forest (SPV), which are
changing over the years. Open forests are decreasing three first years (2013-2015) and then
increasing up to 800 km2. The most interesting year for this category, in 2019 decreased by
1,610 km2 ending the year with 609 km2, however on the last 2 years the area was located up
to 1,700 km2. On the other hand, shrubs also were a sort of fluctuation behavior that could be
strongly related to the changes in the other categories. The lowest area was in 2015 which may
be connected to a landcover change on TCL. In the following years, the area was stable with
around 10000 km2 with a decrease in 2019 coinciding with the decrement of TCL and GRS,
however in 2020-2021 SHR and TCL rises their area. Even though GRS and SVR have low
values in comparison to the categories aforementioned have special importance in Cartagena’s
del Chairá context due to the deforestation land change incentive to categories where different
and extensive activities could take part as cattle (e.g., Armenteras et al. 2013a,b, 2020; Nobre
et al. 2021).

The percentage of each classification (Figure 4.23) allows for identifying the principal cat-
egories over the years and analysis of the land cover changes. SHR has the largest percentage
of land cover in the analyzed period. In 2013, this category started with ≈ 70% fluctuating
around this value and≈ 80% until 2019 when it accomplish a percentage around≈ 90% that
ends with≈ 79% in 2021. Regarding TCL classification has a percentage between≈ 7 to 15 %
over the years, getting the highest value in 2015 (≈ 25%) and the second highest value in 2020
with near to 20% of the total area. GRS and SPV categories have fewer percentages but stills
are important due to the characteristics for the context development has values that are mostly
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Figure 4.22: Landcover classification area in Cartagena del Chairá between 2013‐2021

decreasing over the years up to 2021.

To identify the land cover categories transformation, a classification based on the delta trans-
formation was carried out (Figure 4.24). There are three predominant behaviors of transfor-
mation, the first is shown in two years (2015 and 2019) where all categories are apparently
decreasing, however, that means the categories with values rounded to 0 increased the area or
are burned areas. 2016 is a unique year, showing the second behavior where all the principal
categories (SHR, TCL, GRS, and SPV) are increasing which could be attributed to the refor-
estation and a natural regeneration cycle. The third is focused on one category decreasing and
one and more increasing. There are four years that represent this, 2014 where decreased the
area of SPV and transformed into SHR, principally. 2017 is an interesting year because it de-
creased two main categories (SHR and TCL) and increased GRS and SPV land cover used for
cattle, principally. In 2018 the category objective was TCL, decreasing SHR and SPV. On the
contrary, 2021 decreased TCL and increased SHR and SPV.

Even though the land cover transformation is established is essential tounderstand the change
spatially. For this reason, the spatial location of each classification over the study period (2013-
2021) was made. Two main categories (SHR and TCL) have over the years general develop-
ment, SHR is principally surrounding the river, and TCL is at the south of Cartagena del
Chairá. In 2013 (Figure 4.25a) is clear how coincides the subtraction area where the land cover
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Figure 4.23: Landcover classification percentage in Cartagena del Chairá between 2013‐2021

Figure 4.24: Landcover classification delta in Cartagena del Chairá between 2013‐2021

73



change is allowed with the SHR class. In the following years (Figure 4.25b-c-d-e) SHR area
starts to grow especially at the north reducing TCL in this zone. The have behavior but the
SRH area in the center of Cartagena’s del Chairá where is expanding the area. However, over
the years, the area (lat: 1.2-1.0 long: 74.5-75) is changing SPV to SHR, and the area surround-
ing the river SHR is growing over the years in this zone. Nevertheless, the Figure 4.24 shows
that in other zones are decreasing the Shurbs. Another interesting result is the area where is
focus the TCL is on the southwest and despite decreasing not changing significantly through-
out the years. On the other hand,GRS is locatedmixedwith the shrubs, especially in the north.

Given the complex interplaybetweengeography, socioeconomic variables, andSHRinCarta-
gena del Chairá, note the substantial link between SHR areas and agriculture (see Figure 4.26).
Official SINCHI institute data confirms that expanding agriculture coincideswith river courses,
driving the concentration of SHR zones. In Figure 4.26(a) is able to identify the development
of the change in 10 years on Cartagena’s del Chairá agriculture that increases principally in
the northwest of the municipality, the area where starts the Colombian Amazon and the sub-
traction area (InstitutoNacional de losRecursosNaturalesRenovables y del Ambiente, 1985).

On the other hand, Figure 4.26(b) shows a different behavior, the expansion was at the bor-
der of the existing SHR zone in 2016, even though the difference compared to the last map is
4 years, it is visible in the increase of this zone. Figure 4.26(c) shows that in 2020 the expansion
occurred mainly on the right edge of the SHR area, which could be attributed to slash-and-
burn practices, crop expansion and crop intensification. The Figure 4.26 overlapping the 2002
and 2020 maps of agriculture, revealing the expansion in 18 years that developed more or less
in the same measure around the Caquetá River, except in the mouth of the river south of the
municipality where it can be seen that since 2002 there has been no significant expansion. It
can suggest that colonization in the south of the municipality has occurred to a lesser extent
and given the difficult conditions of road and river interconnection (Armenteras et al. 2020,
Bautista-Cespedes et al. 2021), there is less interest in cultivation and logging for sale.

That could be attributed because some factors linked between them that involve lack of gov-
ernance that causes grabbing land that caused big industries to use the land for extensive agri-
culture that is not the same to the small farmer that is located mostly in the nearest part to the
river (Agudelo-Hz et al., 2023). In this area, despite the displacement has been a problem, es-
pecially in the first decade of the 2000s shown on the Figure 4.26
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Figure 4.25: Spatial location over the years between 2013‐2022
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Atransition away fromfire-dependent tofire-free agriculture and agroforestry systemswould
reduce sources of ignition and ultimately wildfires —a trend that has already been reported in
some tropical regions. Where there is a strong socioeconomic dependence on slash-and-burn
systems, fire management techniques should be used to minimize the risk of agricultural fires
escaping into neighboring forests while avoiding the negative socioeconomic effects of fire pre-
vention to smallholders and traditional and indigenous peoples. Command-and-control oper-
ations against illegal agricultural fires are another important tool to prevent wildfires. Further-
more, expanding the existing network ofwell-trained and equipped fire brigades could enhance
Brazil’s ability to suppress unwanted fires. Last, specializedweather forecast systems and fire be-
havior models have effectively guided fire suppression efforts in many countries, often months
before the fire season starts. These strategies could be readily adapted to and implemented in
Brazil.

Over longer time scales, vegetation responses to climate changemaydrive changes in regional
fire regimes. Forest diebackwould likely result in periods of extensive and intense burning until
reduction of forest fuels. Savanna (cerrado) vegetationwould succeed forests when nearby but,
throughout much of the basin, grass or scrub vegetation would dominate. These ecosystems
would be characterized by frequent low intensity fires that would reinforce climate exclusion
of mature forest species.

Smaller trees (30 cm in diameter) are at high risk ofmortality becausemost Amazonian trees
have very thin bark (Armenteras Pascual et al., 2011). However, bark thickness increases with
tree diameter (Uhl and Kauffman, 1990). Typical fires may kill 40% of the trees (410 cm diam-
eter), but reduce living biomass by as little as 10%, as few large trees are killed (Cochrane and
Schulze, 1999). Fires spread slowly, on the order of 0.25 m min−1, due to moist conditions
under the forest canopy. Late in the day, as temperatures drop and relative humidity levels rise,
fires often die out, residing only in a few smoldering logs. If weather conditions permit, the
smoldering remains of the previous day’s fires reignite by mid-tolate morning. Fire lines may
move only 100–150 m a day but can keep burning this way for weeks or months, as weather
permits (Cochrane and Schulze, 1999). The quantity, condition and distribution of large fu-
els (fallen boles, crowns and large branches) determine reignition probability because of their
ability to shelter fires during periods when conditions are insufficient for flaming combustion
and fire spread. Because of heavy slash loads, logged forests are more likely to sustain fires over
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Figure 4.26: Agricultural maps overlapped in Cartagena del Chairá. (a) are 2002 (blue) and 2012 (green). (b) are 2012 (green)
and 2016 (red). (c) are 2020 (purple) and 2016 (red) and (d) are 2020 (purple) and 2002 (blue).
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extended time periods (Cochrane and Schulze, 1999).

Fuel loading makes fires in these forests very intense (Uhl and Kauffman, 1990), highly de-
grading sites and making them more vulnerable to recurrent fires. Subsequent fires in previ-
ously burned forests are more ecologically severe. Forests lose much of their remaining canopy
cover. An intact forest rarely exceeds 28 ◦C on the hottest days, but after fire or logging opens
the canopy, temperatures may approach 38 ◦C under similar conditions (Uhl and Kauffman,
1990). Forest fuels dry quickly, making the forest susceptible to new fires. Mortality and tree-
fall result in greater fuel loading after initial and subsequent fires. Flame lengths, flame depths,
spread rates, residence times and fire line intensities are all significantly higher in recurrent fires
(Cochrane and Schulze, 1999). A secondfire can kill another 40%of the original trees, this time
corresponding to 40% of the living biomass (Cochrane and Schulze, 1999). Canopy cover is
further reduced and fuel loads increase again. Burning closed canopy evergreen forests creates
a positive feedback in both fire susceptibility and fire severity. This process can continue until
complete deforestation occurs and a grassland or scrub ecosystem replaces the forest (Cochrane
and Schulze, 1999).

4.3.2 Meteorology assessment

Before delving into the details of the conducted sensitivity experiments, it is pivotal to assess
the performance of the ML model to ascertain its capacity to accurately depict wildfire occur-
rences. Figure 4.28a illustrates the temporal progression of both observed data andMLmodel
outcomesover a spanof 10.5 consecutive days,while validation encompassed20%of thedataset
(refer to theMethod section for comprehensive information). During periods devoid of active
wildfires, the model exhibits exceptional precision; however, this precision diminishes during
instances of fire occurrence (days 3 to 5). Nonetheless, themodel is able to capture the upsurge
in temperature and the associated peaks correlated with fires. Evidently, statistical metrics (de-
picted in Figure 12a) corroborate the model’s robust performance in representing both the
magnitude (RMSE = 0.47K andMSE = 0.22K) and temporal evolution (R = 0.85) of temper-
ature.

Given the ML model’s capacity to faithfully depict both temperature magnitude and evo-
lution, including temperature peaks linked to wildfires, we leverage this capability to investi-
gate the variables exerting themost substantial influence on temperature values during wildfire
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Figure 4.27: Experiments increasing (blue stars) and decreasing (green stars) by 30% the meteorological variables: (a) RH, (b)
TCWV, (c) Precipitation, and (d) Wind Speed. For plotting purposes each star represents the mean of 10 wildfire events that

present similar temperatures.

occurrences (temperature > 304, with consistent conclusions for alternative thresholds) when
these variables are altered (refer to theMethod section for details). In the realm ofmeteorology,
RH,TCWV, and precipitation emerge as potent determinants of themodel’s output. Notably,
an increase in these three parameters leads to temperaturemoderation, thereby diminishing the
favorability ofwildfire conditions (Figure 4.27). Moreover, wind speed influences temperature,
causing a decrease when it diminishes, however, with a comparatively lesser impact relative to
othermeteorological variables (Figure 4.27). These findings alignwith theoretical expectations
and the outcomes of prior sections, reinforcing the model’s accurate representation of the in-
terconnectedness betweenmeteorology and fires. This suggests that themodel could also aptly
incorporate socio-economic variables, although this relationship might be less transparent.
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4.3.3 Socio-economic assessment

Turning to the socio-economic experiments (Figure 4.28), the variables inducing themost sub-
stantial impacts on wildfires are GDP, GINI (of paramount significance), and ArmedConflict
Victims, closely followed by displacement of people, unemployment, and lower education lev-
els. Informal work and total population also generate changes in wildfire patterns, albeit with
less pronounced effects. The salience of total population (Figure 4.28b) stems from the ten-
dency of newcomers to colonize various areas, engaging in informal work and individual plant-
ing practices lacking in best practices. Elevating GDP (Figure 4.28c) tends to suppress wildfire
incidents, as increased financial resources imply enhanced technologies and practices for soil
protection and harvesting. This alignment with GINI outcomes (Figure 4.28d) underscores a
decrease in wildfires with reduced inequality, as equity entails job creation, a decline in infor-
mal labor, and better agricultural practices and infrastructure.

The GINI experiment underscores that reducing unemployment (Figure 4.28h) and infor-
mal work (Figure 4.28e) diminishes wildfire favorability. This can be attributed to fewer poten-
tial ignition sources, decreased involvement in illegal activities like illegal crops (linked to fires,
as per Dávalos et al. 2011), and improved conditions due to reduced inequality. Education’s
significance is also apparent in GINI results, where diminishing low-level education (Figure
4.28f) disfavors wildfires. Multiple factors contribute to this: (i) educated individuals are less
prone to ignite forest or crops, (ii) they are less inclined towards illegal activities i.e. illegal crops,
and (iii) enhanced agricultural knowledge fosters better practices, safeguarding soil anddiscour-
aging fires.

Conversely, displacement and armed conflict victimization are closely intertwined, with dis-
placement primarily arising from Colombia’s internal conflict. Interestingly, an increase in
conflict victims and displacement leads to decreased fires. This is because heightened agricul-
tural activity is curtailed, as people are reluctant to enter forests or agricultural areas due to
the risk of encountering armed groups overseeing illegal crops (Dávalos et al., 2011). These
findings emphasize the government’s responsibility to not only conclude the conflict but also
integrate displaced individuals into groups that contribute to CdC’s educational, economic,
and agricultural progress. Ceasing hostilities could yield unintended benefits, transforming
challenges into opportunities to enrich lives, enhance agricultural practices, bolster connectiv-
ity, expand job opportunities, and develop technologies. Such growthwould be personally and
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communally transformative, aiding CdC’s advancement and concurrently diminishing GINI
while bolstering GDP, thus reducing wildfire vulnerability frommultifaceted angles.

4.4 DrawingMitigation and Adaptation Strategies

Our approach begins with an exposition of the strategies that are currently in place, providing
a contextual foundation for the subsequent presentation of the proposed strategies. This se-
quential arrangement serves to highlight the enhancements and linkages inherent in the new
strategies, thereby ensuring transparency in their evolution. Considering the socioeconomic
analysis and the latest governmental program by Cartagena del Chairá (Vargas-Correa, 2019),
which is tailored to address forest fire concerns, we evaluated the proposed strategies as foun-
dational for shaping the approaches discussed in this section. In the realm of education, the
governmental plan underscores the significance of bolstering technical and non-formal educa-
tion for adults engaged in non-formal occupations. It also advocates for the establishment of
comprehensive farms within educational institutions to facilitate agricultural practices. In the
domain of conservation and environment, the plan emphasizes the modernization of rural ar-
eas and the promotion of agricultural production to safeguard the food supply chain.

The primary arena aligned with fire-related issues within the plan is agriculture. To address
this, the strategies concentrate on offering technical aid, training, and guidance in agricultural
management practices. Furthermore, a mechanism for evaluating the potential impacts of
new practices on the environment and society will be instituted. A dedicated focus is also
placed on land tenure, aiming to optimize the procurement of arable land, enabling farmers
to enhance their livelihoods through agriculture (Vargas-Correa, 2019). The financing for this
endeavor will be derived from municipal, regional, and national budgets, alongside a portion
of agricultural yield generated from the acquired land and both domestic and international
funding. The strategies extend support to empower local farmer associations, fostering their
self-management capabilities to enhance the well-being of farmers. Additionally, initiatives are
targeted at restocking livestock and providing tools to augment the security of small livestock
holders. To diversify the economic landscape, the municipality intends to allocate resources
for the establishment of poultry and fish farms, managed by local producers (Vargas-Correa,
2019). Lastly, the municipality’s agenda encompasses funding family farming programs to
elevate the income of small-scale producers, ultimately improving their quality of life. Ap-
proaches with a social and post-conflict perspective encompass mechanisms for citizen engage-
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Figure 4.28: (a) ML model evaluation of three months of data, although here a subset of 10.5 days that include wildfires is
plotted. Notice that the R, MSE and RMSE are also plotted in the figure, but are calculated for the three months and not
only for the subset. Bland‐Altman plots for experiments increasing (blue stars) and decreasing (green stars) by 30% the

socio‐economic variables: (b) Total Population, (c) GDP, (d) GINI, (e) Informal Work, (f) Low Education Level, (g)
Displacement, (h) Unemployment, and (i) Victims Armed Conflict. For plotting purposes each star represents the mean of

10 wildfire events that present similar temperatures.
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ment, pre-implementation consultation, employment creation funded through national post-
conflict funds, and backing organizations dedicated to environmental preservation and safe-
guarding natural resources (Vargas-Correa, 2019).

The strategies formulatedwithin themunicipal government plan offer valuable insights into
Cartagena del Chairá’s political landscape and its prioritization and management approach.
Strategies encompassing funding and technical support for family agriculture, economic di-
versification, and employment generation in alignment with post-conflict funds bear direct
and indirect potential to alleviate forest fires in the Amazonian region. Nevertheless, certain
strategies, such as cattle restocking, land tenure for municipal revenue, and agricultural tech-
nification, seem to diverge from the municipality’s fire mitigation needs and the Sustainable
Development Goals embraced for the Amazon by 2030 (Painter et al., 2023) and Amazonian
panel recommendations (Nobre et al., 2021).

Guided by meteorological, vegetation coverage, and socio-economic findings, while consid-
ering near-term climate projections (2050), we propose preliminary measures that focus on
three facets: land cover, economic, and social (inequality and displacement). These proposed
strategies aim to sustainably mitigate forest fires in Cartagena del Chairá.
Land Cover Strategies

• Maintained a hydrated soil, using plants that retain moisture and evaporate slowly, so
disfavor very dry conditions that could promote wildfires.

• To secure the border in the deforestation zone, a paramount focus should be on granting
externally monitored concessions to small landowners whose plots contain substantial
forest proportions. These concessions would be assigned within the deforested section
of the plot and complemented by value-chain integration for endemic fruits and high-
value agroforestry products (e.g., acai, camu-camu, buriti, etc.). The implementation
of this controlled-support blend would resonate as a powerful shift in policy, transi-
tioning from incentivizing deforestation to endorsing sustainable agroforestry and nat-
ural forests. Although unprecedented in Colombia, analogous bioeconomy approaches
(Gobierno-Colombia, 2020) have been proposed in Brazil to tackle the same systemic
flaw. It is through land market management that we can envisage the salvation of Ama-
zonian forests and biodiversity.

• In line with this concept, the planning of areas, coverage change monitoring, and pre-
vention of illegal settlements (Jara et al., 2016) contribute tomitigating the vulnerability
to forest fires among the population (e.g., Galiana-Martin et al. 2011; Hernández 2016;
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Miranda et al. 2020). These efforts involve integrating the identification of Wildland-
Urban Interface (WUI) areas into planning instruments as a fire prevention guideline
and risk reduction strategy (e.g., Calkin et al. 2014; Miranda et al. 2020; Moritz et al.
2014) in municipalities with medium, high, and very high socioeconomic vulnerability.

• Effective forest fire management encompasses all phases, from prevention to impact re-
duction. This begins with individual responsibility, community involvement, resident
training, and provision of fire reduction equipment. It further involves implementing
fire detection systems, communication networks, and safeguarding strategic ecosystems
within the department (e.g., Calkin et al. 2021; Casallas et al. 2022). These actions collec-
tively aim to prevent fire outbreaks andmitigate their adverse effects on both communi-
ties and ecosystems. It’s a holistic strategy that involves situational awareness, long-term
assessment, monitoring and control, as well as post-fire evaluation (Calkin et al., 2021).

• The synergy between community and ecological networks holds significant importance
for driving (i) land management decisions, (ii) understanding the social, environmental,
and economic context of an area, and (iii) developing a novel framework to link social
and ecological systems (Windsor et al., 2022). To achieve this, the emphasis should be
on practices that seamlessly integrate these two dimensions. Establishing agro ecological
training partnerships among public, private, and non-profit organizations can facilitate
education, implementation, support, and adaptation of such practices.

• Implementing a combination of positive and negative incentives policies is crucial. Pro-
hibitive measures should be balanced with positive reinforcements. For instance, costly
techniques like pasture rotation and trial verge management could be offset through
social investment, aligning with the national development plan’s commitment to rural
sustainability. This approach could facilitate the adoption of agroecological methods.

• Government-led territorial consolidation efforts can be bolstered by addressing both in-
frastructural and cultural aspects. It’s noteworthy that small-scale clearances by peas-
ant families, often conducted in collaboration, accumulate into significant deforestation
rates. These practices could be mitigated through a comprehensive approach that con-
siders both environmental and social dimensions.

Economic Strategies

• Investing in research and securing funding often poses significant financial and opera-
tional challenges for institutions in the Global South (Coccia 2009; Clavijo 2016). Ob-
taining documentation for grant applications andmanaging subsidies canbe convoluted
and time-consuming, hindering timely completion of scientific projects, international
collaborations with stringent project deadlines, and access to global research funding
opportunities for researchers from the Global South (Merkle, 2016). Urgently, Global
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South institutions must establish transparent funding management policies to ensure
access to research funds, coupled with mechanisms to monitor fund utilization. These
policies should streamline administrative burdens for researchers and ensure equitable
benefits for both national and international researchers. However, implementing such
standards often demands the establishment of entirely new administrative policies and
teams, such as ethics committees, incurring both financial and time costs (Hyden 2016;
van Helden 2012). Nonetheless, this endeavor offers the potential to raise awareness
among administrative personnel regarding funding requirements and opportunities for
research, promoting institutional growth (Ocampo-Ariza et al., 2023).

• Furthermore, certain funding opportunities are explicitly geared towards international
collaborations, including provisions for exploratory visits to potential foreign partners
and acceptance of proposals in multiple languages (e.g., WWF funding). Ecologists and
conservationists from the Global South can harness these opportunities to spearhead
research grant applications, ensuring direct access to funds and equitable benefits for
national and international collaborators (Asase et al., 2022). Assuming leadership in
funding applications may entail increased workloads, involving identifying funding av-
enues accessible to Global South researchers and aligning research proposals with spe-
cific standards. Beyond the additional workload, it can foster well-planned early collab-
orations with international researchers and expand funding alternatives for their pro-
motion. Moreover, this approach facilitates funding agencies’ understanding of the
characteristics and needs of fund recipients in the Global South, ultimately enhancing
grant application requirements with a broader diversity, equity, and inclusion perspec-
tive (Escobar-Alvarez et al., 2021). Currently, limited funding supports the develop-
ment of participatory research collaborations and joint creation of research questions
andmethods between theGlobal South and international researchers, undermining col-
laborative research’s potential based on shared interests. Augmenting research awards
for early stages of international research agreements holds promise for fostering cross-
cultural scientific collaboration (Ocampo-Ariza et al., 2023).

• In the realm of funding, it’s important to highlight that private financing is absent. This
is due to the voluntarynature of rainforest conservation and restoration initiatives,which
lack attractiveness to financial institutions. However, livestock ownership could poten-
tially align with the interests of financial institutions due to lending opportunities, as
opposed to rainforest conservation initiatives that rely on volunteer efforts (private do-
nations).

Social Strategies

• However, wemust acknowledge that parachute research practices also exist within coun-
tries of the Global South, especially when access to higher education and capacity devel-
opment is concentrated in large cities (e.g., de Vos and Schwartz 2022). Research and
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the practice of tropical ecology and conservation can greatly benefit from diverse teams,
including local specialists, such as ”paraecologists,” who possess empirical knowledge of
local ecosystems and biodiversity (Sheil and Lawrence 2004; Schmiedel et al. 2016). Col-
laborative project development and results discussionwith local communitiesmaximize
applicability and impact, while respecting local communities’ sovereignty over their terri-
tory and resources, and ensuring enduring trust-based relationships (Toomey et al. 2019;
Ocampo-Ariza et al. 2023).

• Respectful engagement of local communities entails their active participation and input
at multiple stages, securing permissions, co-developing research questions, collaborat-
ing with and hiring locals, and building capacities during data collection and process-
ing. Open discussions of interim and final research findings and adaptive refinement
of participatory research and practices are crucial (e.g., Toomey et al. 2019; Ramírez-
Castañeda et al. 2022; Ocampo-Ariza et al. 2023).

• Interdisciplinary approaches in which ecological expertise engages in intercultural dia-
logue can support this objective and ensure the integration of traditional knowledge
from local stakeholders.

• In the future, a significant challenge for integrating social and ecological networks re-
volves around appropriate data collection. Specifically, gathering and aligning data of
the correct type (i.e., weighted linkswith comparable or interactable units) and at the cor-
rect resolution (e.g., seasonal management decisions and knowledge exchange by farm-
ers) is vital. Many methods exist to generate social data for network construction; how-
ever, current methods are qualitative (i.e., using ecosystem service provision as a node
linked to species withoutmeasuring the species’ impact on service provision) and/or col-
lect data at spatial or temporal resolutions inappropriate for integration with ecological
networks (Windsor et al., 2022)
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5
Conclusions

This study initially centers on an exhaustive spatio-temporal analyses of themeteorological con-
ditions that instigate wildfires in Cartagena del Chaira, establishing that elevated temperatures,
dry environments, strong winds, and absence of precipitation can trigger forest fires, partic-
ularly in the northern region and during the boreal winter season. Nevertheless, these condi-
tionsmust coincidewith areas hosting shrubbery tied to agricultural practices. Farmers employ
”controlled” fires for soil preparation, yet issues arise due to inadequate adherence to rigorous
standards in many plantations. Moreover, the prevalence of illegal plantations using fires to
supplant legal ones compounds the challenges.

Conversely, a thorough analysis of climate change in the study area is conducted by gauging
the magnitude of meteorological variable anomalies for the year 2049 across four diverse sce-
narios encompassing different SSPs and RCPs. The findings reveal that during boreal winter,
when wildfires typically emerge, temperature and RH primarily contribute to favorable wild-
fire conditions, whereas wind speed and precipitation hinder their development. It is crucial to
highlight that certain scenarios depict conditions wherein both precipitation and wind speed
at the south and southeast of CdC could foster fires, while temperature and RH in the same
scenarios favor them more pronouncedly. This dual concern underscores the necessity for the
government to not only mitigate existing fire-prone zones but also prevent new fire outbreaks
in previously unaffected areas. Additionally, in boreal summer, temperature, RH, and wind
speed promote wildfires, with precipitation offering a counteracting influence (albeit less po-
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tently than in boreal winter) across most scenarios. Nonetheless, at the south and southeast of
CdC, all variables align to elevate the likelihood of wildfires, raising two alarming aspects: (i)
regions previously untouched by fires could become susceptible, and (ii) boreal summer could
evolve into a season conducive to wildfires, extending the fire-prone period beyond just the bo-
real winter.

Given the ominous climate change scenarios threatening the region, a MLmodel is devised
to (i) discern the meteorological and socio-economic factors influencing fires and (ii) develop
strategies to address the variables wielding themost significant impact on fire occurrences. The
results underscore the significance of RH, TCWV, and precipitation in wildfire dynamics, em-
phasizing the importance ofmaintaining amoist environment and hydrated soil to curtail fires.
On the socio-economic front, the GINI index and lower education levels exhibit potential to
diminish wildfires, while heightened displacement trends could amplify fire risks. This un-
derscores the government’s imperative to not only resolve conflicts but also foster opportu-
nities, employment, and education, with the overarching goal of reducing inequality (GINI)
and thereby mitigating fire incidents.

Finally, we create strategies that combine all the results, and are based on already designed
plans andpolicies. Our comprehensive approach encompasses land cover, economic, and social
strategies to address the complex challenges posed by forest fires and sustainable land manage-
ment in the Amazon region:

• Land Cover Strategies: To mitigate the risk of wildfires, we emphasize maintaining
hydrated soil through the cultivation of moisture-retaining plants that discourage ex-
tremely dry conditions. Additionally, we propose granting monitored concessions to
small landowners with significant forested areas in their plots, strategically positioned
within deforested sections. These concessions would integrate value chains for endemic
fruits and high-value agroforestry products, signifying a transformative policy shift to-
wards sustainable agroforestry andnatural forest preservation. This pioneering approach,
althoughunprecedented inColombia,mirrors successful bioeconomy strategies inBrazil,
highlighting the potential of effective land market management for conserving Amazo-
nian biodiversity.

• Fire Vulnerability Reduction: To minimize vulnerability to forest fires, we advocate
for proactive measures such as proper area planning, continuous land cover monitoring,
and the prevention of unauthorized settlements. Integrating WUI zones into planning
tools is a strategic guideline for fire prevention in municipalities with varying socioeco-
nomic vulnerabilities, safeguarding populations from fire-related hazards.
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• Holistic Fire Management: Our approach to holistic forest fire management spans
prevention to impact reduction, integrating individual and community responsibilities,
training, and fire mitigation equipment provision. This strategy is underpinned by the
deployment of fire detection systems, robust communication networks, and the protec-
tion of key ecosystems. By adopting a comprehensive approach that includes situational
awareness, long-term evaluation, monitoring, control, and post-fire assessment, we aim
to prevent fire incidents and mitigate their adverse effects on both communities and
ecosystems.

• Community-Ecological Synergy: We recognize the significance of harmonizing com-
munity and ecological networks, essential for informed landmanagement decisions, un-
derstanding local socio-environmental contexts, and establishing innovative connections
between social and ecological systems. Prioritizing practices that seamlessly bridge these
dimensions is crucial, andwepropose forging agroecological training collaborations across
public, private, and non-profit sectors to facilitate education, implementation, support,
and adaptation of sustainable practices.

• Balanced Incentive Policies: Our approach emphasizes the importance of balancing
positive and negative incentives. While prohibitions need to be balanced with rewards,
we suggest that investments in social initiatives could offset costs associated with sus-
tainable practices like pasture rotation and trial verge management. Aligning with the
national development plan’s goals for rural sustainability, this approach could foster the
widespread adoption of agroecological methods.

• Government-Led Territorial Consolidation: To enhance government-led territorial
consolidation, we recommend addressing both infrastructure and cultural factors. Col-
laborative small-scale clearances by local families significantly contribute to deforesta-
tion, and a comprehensive approach is essential to mitigate these practices, considering
both environmental and social dimensions.

In conclusion, our multi-faceted approach, spanning land cover, economic, and social di-
mensions, underscores the importance of sustainable strategies for mitigating forest fires and
promoting responsible land management in the Amazon region. Through a holistic frame-
work that integrates diverse stakeholder perspectives and engages local communities, we aim to
pave the way for a harmonious coexistence between people and the environment in this critical
ecosystem.
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